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h i g h l i g h t s

• A dynamic probit model with a first order Markov process was developed.
• Gibbs sampler using data augmentation approach and forward filtering backward sampling algorithm were presented.
• The discussion was extended to propose models to generalized models including Student t-link function.
• Model fit was compared between static and dynamic probit models.
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a b s t r a c t

The authors consider a dynamic probit model where the coefficients follow a first-order
Markov process. An exact Gibbs sampler for Bayesian analysis is presented for the model
using the data augmentation approach and the forward filtering backward sampling
algorithm for dynamic linear models. The authors discuss how our approach can be used
for dynamic probit models as well as its generalizations including Markov regressions
and models with Student link functions. An approach is presented to compare static and
dynamic probit models as well as for Markov order selection in these classes of dynamic
models. The developed approach is implemented to some actual data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and overview

Time varying coefficient models for categorical longitudinal data have been considered by authors such as Carlin and
Polson (1992), Shephard and Pitt (1997), Gamerman (1998), Kauermann (2000), and more recently by Fruhwirth-Schnatter
and Fruhwirth (2007). Most of the previous works have considered logit-type state-space models. As noted by Fruhwirth-
Schnatter and Fruhwirth (2007), Markov chain Monte Carlo (MCMC) approaches proposed by Shephard and Pitt (1997)
and Gamerman (1998) for the analysis of these models are based on the Metropolis–Hastings algorithm which requires
specification of a proposal density in high dimensions. To alleviate this, the authors proposed a data augmentation based
MCMC method for analysis of dynamic logit models. A simple version of a dynamic probit model has been considered by
Andrieu and Daucet (2002) where the authors used particle filtering for Bayesian analysis.

In what follows, we consider probit-type state-spacemodels and develop an exact Gibbs sampler for Bayesian analysis of
this class of models. Our approach is an extension of the data augmentation approach of Albert and Chib (1993) to dynamic
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probit models where we implement the forward filtering backward sampling algorithm of Fruhwirth-Schnatter (1994). Our
approach can be easily generalized to consider t distribution link functions that can be used to consider logit type dynamic
models as well as Markov regression models.

We consider a binary time series Xt and we define a dynamic probit model similar to that considered by Andrieu and
Daucet (2002) as

Pr{Xt = 1 | πt} = πt with πt = Φ(Ftθt), (1.1)

where Ft is a 1 × K covariate vector and θt is a K × 1 vector of regression parameters. We define the dynamic nature of the
model via a state equation for θt as

θt = Gθt−1 + wt (1.2)

with wt ’s are uncorrelated multivariate normal error vectors with mean 0 and covariance matrix Wθ and G is the specified
transition matrix of the model. It is most common to assume that G is an identity matrix implying a steady model in the
sense of West and Harrison (1997). Thus, in our development we consider

θt = θt−1 + wt . (1.3)

The procedure can be easily extended for a general known transition G as well as for certain cases where G is unknown.
We can extend this for longitudinal data for individuals i = 1, . . . ,M . In this case we write the above model as

Pr{Xit = 1 | πit} = πit with πit = Φ(Fitθt), (1.4)

and assume the same state equation (1.3) for all individuals.
In Section 2, we introduce Bayesian inference for dynamic probit models and illustrate how an exact Gibbs sampler can

be used. Extensions to Markov regression models and Student-t link functions are considered in Section 3. We illustrate
how marginal likelihoods can be obtained and used to compare static versus dynamic probit models in Section 4. We also
discuss how the marginal likelihood computations can be easily extended for Student-t link function case and thus can be
used for selecting degrees of freedom. Implementation of our approach is illustrated in Section 5 using real data from the
Great Smoky Mountains Study of Costello et al. (1996).

2. Bayesian inference for the dynamic probit model

We first consider the case for the ith individual Following Albert and Chib (1993), we can define the above model by
using independent latent variables Zit such that

Xit =


1 if Zit > 0
0 Otherwise. (2.1)

If we assume that Zit ’s are normally distributed with mean Fitθt and variance 1, that is, Zit ∼ N(Fitθt , 1), then we have the
probit model

πit = Φ(Fitθt). (2.2)

Given the above setup, we can develop a Gibbs sampler for the inference using the data augmentation algorithm of Albert
and Chib (1993) with the algorithm proposed by Fruhwirth-Schnatter (1994) for dynamic linear models.

Given observed dataD = {Xit; t = 1, . . . , T }, we can design a Gibbs sampler using full posterior conditional distributions
p(Θ | D, ZT

i ) and p(ZT
i | D, Θ) with vectors Θ = (θ1, θ2, . . . , θT ) and ZT

i = (Zi1 Zi2 · · · ZiT ). In obtaining p(ZT
i | D, Θ), we

note that Zit ’s are independent random variables and use

(Zit | θt , Xit = 1) ∼ N(Fitθt , 1)I (Zit > 0),

and

(Zit | θt , Xit = 0) ∼ N(Fitθt , 1)I (Zit ≤ 0).

In the implementation of the Gibbs sampler, we can directly draw from the joint posterior distribution of
p(θ1, θ2, . . . , θT | ZT

i ) using the forward filtering backward sampling algorithm of Fruhwirth-Schnatter (1994) which is given
in West and Harrison (1997) for Kalman filter type models. It is possible to adopt the algorithm for our case as will be
discussed next.

We define Z t
i = (Z t−1

i , Zit), t = 1, . . . , T and note that, similar to the Bayesian dynamic linear models of West and
Harrison (1997), using the Markov structure of our model we can write p(θ1, θ2, . . . , θT | ZT

i ) as

p(θT | ZT
i )p(θT−1 | θT , ZT−1

i ) · · · p(θ1 | θ2, Z1
i ), (2.3)
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