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horizontal) and amplitude (or y or vertical) variability. Traditional methods often ignore
the phase variability and focus solely on the amplitude variation, using cross-sectional
techniques such as fPCA for dimensional reduction and data modeling. Ignoring phase
variability leads to a loss of structure in the data and inefficiency in data models. This
paper presents an approach that relies on separating the phase (x-axis) and amplitude

izm?:fje variability (y-axis), then modeling these components using joint distributions. This separation, in
Function alignment turn, is performed using a technique called elastic shape analysis of curves that involves
Function principal component analysis a new mathematical representation of functional data. Then, using individual fPCAs,
Functional data analysis one each for phase and amplitude components, it imposes joint probability models on
Generative model principal coefficients of these components while respecting the nonlinear geometry of
Phase variability the phase representation space. These ideas are demonstrated using random sampling,

for models estimated from simulated and real datasets, and show their superiority over
models that ignore phase-amplitude separation. Furthermore, the generative models are
applied to classification of functional data and achieve high performance in applications
involving SONAR signals of underwater objects, handwritten signatures, and periodic body
movements recorded by smart phones.

Published by Elsevier B.V.

1. Introduction

The problem of statistical analysis and modeling of data in function spaces is important in applications arising in nearly
every branch of science, including signal processing, geology, biology, and chemistry. The observations here are time samples
of real-valued functions on an observation interval, and to perform effective data analysis it is desirable to have a generative,
probabilistic model for these observations. The model is expected to properly and parsimoniously characterize the nature
and variability in the data. It should also lead to efficient procedures for conducting hypothesis tests, performing bootstraps,
and making forecasts. An interesting aspect of functional data is that underlying variability can be ascribed to two sources.
In a sample data the given functions may not be perfectly aligned and the mechanism for alignment is an important topic of
research. The variability exhibited in functions after alignment is termed the amplitude (or y or vertical) variability and the
warping functions that are used in the alignment are said to capture the phase (or x or horizontal) variability. A more explicit
mathematical definition of amplitude and phase variability will be made in Section 2. It is imperative that any technique for
analysis or modeling of functional data should take both these variabilities into account.
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Fig. 1. Samples drawn from a Gaussian model fitted to the principal components for the unaligned and aligned data.

1.1. Need for phase—amplitude separation

Many of the current methods for analyzing functional data ignore the phase variability. They implicitly assume that the
observed functions are already temporally aligned and all the variability is restricted only to the y-axis. A prominent example
of this situation is functional principal component analysis (fPCA) (see e.g., Ramsay and Silverman, 2005) that is used to
discover dominant modes of variation in the data and has been extensively used in modeling functional observations. If the
phase variability is ignored, the resulting model may fail to capture patterns present in the data and will lead to inefficient
data models.

Fig. 1 provides an illustration of this using simulated functional data. This data was simulated using the equation
yi(t) = ze"©D*2 ¢t € [—6,6], i = 1,2,...,21, where z is i.id. (1, (0.05)%) and a; is i.id. N (0, (1.25)2). The top-
left plot shows the original data; each sample function here is a unimodal function with slight variability in height and a
large variability in the peak placement. One can attribute different locations of the peak to the phase variability. If one takes
the cross-sectional mean of this data, ignoring the phase variability, the result is shown in the top-middle plot. The unimodal
structure is lost in this mean function with large amount of stretching. Furthermore, if one performs fPCA on this data and
imposes the standard independent normal models on fPCA coefficients (details of this construction are given later), the
resulting model will lack this unimodal structure. Shown in the top-right plot are random samples generated from such a
probability model on the function space where a Gaussian model is imposed on the fPCA coefficients. These random samples
are not representative of the original data; the essential shape of the function is lost, with some of the curves having two,
three, or even more peaks.

The reason why the underlying unimodal pattern is not retained in the model is that the phase variability was ignored. We
argue that a proper technique is to separate the phase and amplitude variability, using techniques for functional alignment,
and then develop a probability model for each component. While postponing details for later, we show results obtained by a
separation-based approach in the bottom row. The mean of the aligned functions is shown in the bottom left panel of Fig. 1.
Clearly retained is the unimodal structure and the random samples generated under a framework that model the phase
and amplitude variables individually have the same structure. Some random samples are shown in the bottom right panel;
these displays are simply meant to motivate the framework and the mathematical details are provided later in the paper.
This example clearly motivates the need for function alignment for modeling functional data that contains phase variability.

1.2. Past literature on phase-amplitude separation

This brings up an important question: How to separate the phase and amplitude components in a given dataset?
While this is a topic of ongoing research, a number of techniques have already been discussed in the literature. The main
difference between them lies in the choice of the cost function used in the alignment process. The different cost functions
suggested in the statistics literature including area-under-the-curve matching (Liu and Muller, 2004; Tang and Muller,
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