
Computer Languages, Systems & Structures 53 (2018) 43–58 

Contents lists available at ScienceDirect 

Computer Languages, Systems & Structures 

journal homepage: www.elsevier.com/locate/cl 

A process-oriented modeling approach for graphical 

development of mobile business apps 

Christoph Rieger ∗, Herbert Kuchen 

ERCIS, University of Münster, Leonardo-Campus 3, Münster, 48149, Germany 

a r t i c l e i n f o 

Article history: 

Received 12 August 2017 

Revised 30 November 2017 

Accepted 9 January 2018 

Keywords: 

Graphical DSL 

Mobile application 

Business app 

Model-driven software development 

Data model inference 

a b s t r a c t 

Mobile app development is an activity predominantly performed by software developers. 

Domain experts and future users are merely considered in early development phases as 

source of requirements or consulted for evaluating the resulting product. In the domain 

of business apps, many cross-platform programming frameworks exist but approaches also 

targeted at non-technical users are rare. Existing graphical notations for describing apps 

either lack the simplicity to be understandable by domain experts or are not expressive 

enough to support automated processing. The MAML framework is proposed as model- 

driven approach for describing mobile apps in a platform-agnostic fashion not only for 

software developers but also for process modelers and domain experts. Data, views, busi- 

ness logic, and user interactions are jointly modeled from a process perspective using a 

graphical domain-specific language. To aggregate multiple use cases and provide advanced 

modeling support, an inference mechanism is utilized to deduce a global data model. 

Through model transformations, native apps are then automatically generated for multiple 

platforms without manual programming. Our approach is compared to the IFML notation 

in an observational study, with promising results regarding readability and usability. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

A decade after Apple triggered the trend towards smartphones with its first iPhone, mobile devices and apps have been 

widely adopted. Business apps usually cover small-scale tasks and support the digitalization of processes which benefit 

from the increased mobility and availability of ubiquitous devices. For example, salespersons can access company data from 

a customer’s location, expenses can be followed up remotely, and employees can submit requests for vacations not only 

from their office desk. 

Until now, app development remains a task predominantly executed by programmers, often considering other stakehold- 

ers and future users primarily in requirements engineering phases upfront implementation. However, the research institute 

Gartner predicted that within a few years, more than half of all company-internal business apps will be created using 

codeless tools [1] . Many frameworks for programming mobile apps have emerged over the past years and cross-platform 

approaches allow for a large user base with low development effort s (an overview is given in [2–4] ). Several commercial 

platforms provide cross-platform capabilities but usually focus on source code transformations, partly supported by graphi- 

cal editors for designing individual views (e.g., [5,6] ). 

∗ Corresponding author. 

E-mail address: christoph.rieger@ercis.de (C. Rieger). 

https://doi.org/10.1016/j.cl.2018.01.001 

1477-8424/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.cl.2018.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2018.01.001&domain=pdf
mailto:christoph.rieger@ercis.de
https://doi.org/10.1016/j.cl.2018.01.001


44 C. Rieger, H. Kuchen / Computer Languages, Systems & Structures 53 (2018) 43–58 

Modeling approaches that focus on platform-agnostic representations of mobile apps are rarely used in practice. Model- 

driven software development using a domain-specific language (DSL) bears the advantage of transforming a concise spec- 

ification of the target application into a software product (semi-) automatically [7] . DSLs are generally suited to cover a 

well-defined scope with sensible abstractions for inherent domain concepts and increase productivity of developers com- 

pared to general purpose languages (GPL) [8] . Several textual DSLs for mobile apps have been presented in literature (e.g., 

[9–11] ), although not all of them fully automate code generation [12] . However, textual DSLs provide only minor benefits to 

non-technical users because they still feel like programming [13] . 

Graphical modeling is therefore particularly suitable to describe apps by stakeholders with strong domain knowledge in 

order to better match the software product with their tacit requirements [14,15] . A suitable notation mandates a platform- 

independent design to also consider emerging mobile devices such as wearables, smart home applications, and in-vehicle 

apps. 

To model sequences of activities, a wide variety of general-purpose process modeling notations such as Business Process 

Model and Notation (BPMN) exists [16] . Usually, those are not detailed enough to cover mobile-specific aspects and can 

hardly be interpreted by code generators from a technical point of view. In contrast, technical notations such as the Interac- 

tion Flow Modeling Language (IFML) are too complex to be understood by domain experts and require software engineering 

knowledge [17,18] . 

Moreover, the editor component is of major importance for the usability of a graphical modeling approach. Comparisons 

for graphical notations such as the Unified Modeling Language (UML) show that editors for the same notation differ sig- 

nificantly in modeling effort, learnability, and memory load for the user [19] . Editor development is a challenge in itself 

[20,21] and even the presence of a metamodel can only support the syntax of the resulting notation [22] . 

This article aims to alleviate the aforementioned problems by presenting the Münster App Modeling Language (MAML; 

pronounced ’mammal’), a graphical DSL for describing business apps that tackles the trade-off between technical complexity 

and graphical oversimplification in order to be understandable not only for software developers but also for domain experts 

and process modelers. Model transformations allow for a fully automatic generation of native smartphone apps for the An- 

droid and iOS platform from the specified graphical model without manually writing code. Besides the technical necessity 

of such a global model for code generation, it enables advanced modeling support for the graphical editor. 

Four main research questions are addressed to investigate the potential of data model inference in the context of model- 

driven code generation approaches for mobile business apps: 

(RQ1) How can user-oriented specification of business app functionality be achieved using a graphical modeling notation? 

(RQ2) Is the modular subdivision of mobile app functionality feasible from a technical perspective with regard to the re- 

combination of partial data models? 

(RQ3) What additional support can data model inference provide for users to create semantically correct models? 

(RQ4) Does the process-oriented subdivision of functionality help non-technical users in understanding and creating mobile 

app models? 

Extending on previous work presented at SAC 2017 [23] , this article presents the data model inference approach using 

a the scenario of an inventory management app and focuses on the benefits of such a mechanism for modeling environ- 

ments regarding semantic semantic and validation (RQ3). In addition, the evaluation of MAML is extended to investigate the 

perceived usefulness of data model inference specifically for non-technical users (RQ4). 

After presenting related work in Section 2 , the proposed DSL and framework are presented in Section 3 . Section 4 dis- 

cusses the approach and presents evaluation results from a usability study before concluding in Section 5 . 

2. Related work 

Since model-driven and cross-platform development of apps has been a topic for a few years now, there is plenty of 

scientific work on the general topic. However, only few graphical modeling approaches with subsequent code generation 

of mobile apps exist. Especially with regard to a workflow-related level of abstraction, related work on business process 

modeling is also considered in the following. 

2.1. Cross-platform mobile apps 

Developing mobile apps that run on multiple platforms can be achieved using different approaches. El-Kassas et al. 

[24] distinguish three major categories: compiling existing source code from a legacy application or different platform such 

as in [25] , interpreting a single code base through a runtime or virtual machine such as Apache Cordova for developing 

hybrid apps [26] , and model-driven generation of native app source code from a common representation. With regard to 

the latter category, various academic and commercial frameworks exist [12] . Only few of them, such as Mobl [9] , PIMAR 

[27] , and AXIOM [10] cover the full spectrum of runtime behavior and structure of an app; often providing a custom textual 

DSL for this means. The work in this article is based on MD 

2 which focuses on the generation of business apps (i.e. form- 

based, data-driven apps interacting with back-end systems [4] ). The input model is likewise specified using a platform- 

independent, textual DSL [11] . After preprocessing the model, code generators transform it into native platform source code 

for the Android and iOS platform [28,29] . Despite reducing development effort and complexity through domain-specific 



Download	English	Version:

https://daneshyari.com/en/article/6870899

Download	Persian	Version:

https://daneshyari.com/article/6870899

Daneshyari.com

https://daneshyari.com/en/article/6870899
https://daneshyari.com/article/6870899
https://daneshyari.com/

