
Computer Languages, Systems & Structures 54 (2018) 337–357

Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

journal homepage: www.elsevier.com/locate/cl

Automatic production of end user documentation for DSLs

Gwendal Le Moulec

∗, Arnaud Blouin, Valérie Gouranton, Bruno Arnaldi

Univ Rennes, INSA Rennes, Inria, CNRS, IRISA, France

a r t i c l e i n f o

Article history:

Received 28 November 2017

Revised 19 June 2018

Accepted 18 July 2018

Available online 26 July 2018

Keywords:

Software documentation

Domain-specific language

Model slicing

a b s t r a c t

Domain-specific languages (DSL) are developed for answering specific problems by lever-

aging the expertise of domain stakeholders. The development of DSLs requires a signifi-

cant software engineering effort: editors, code generators, etc, must be developed to make

a DSL usable. Documenting a DSL is also a major and time-consuming task required to

promote it and address its learning curve. Recent research work in software language

engineering focus on easing the development of DSLs. This work focuses on easing the

production of documentation of textual DSLs. The API documentation domain identified

challenges we adapted to DSL documentation. Based on these challenges we propose a

model-driven approach that relies on DSL artifacts to extract information required to build

documentation. Our implementation, called Docywood , targets two platforms: Markdown

documentation for static web sites and Xtext code fragments for live documentation while

modeling. We used Docywood on two DSLs, namely ThingML and Target Platform Definition .

Feedback from end users and language designers exhibits qualitative benefits of the pro-

posal with regard to the DSL documentation challenges. End user experiments conducted

on ThingML and Target Platform Definition show benefits on the correctness of the created

models when using Docywood on ThingML .

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

According to Mernik et al., domain-specific language (DSLs) are software languages that “provide notations and constructs

tailored toward a particular application domain ” [1] . DSLs are increasingly being developed to leverage specific domain ex-

pertise of various stakeholders involved in the development of software systems [2] . Although DSLs are usually small, their

development requires a significant software engineering effort [3,4] . Concrete syntaxes, editors and compilers are examples

of core components that compose a DSL ecosystem. Current research efforts focus on easing the development of specific

parts of DSLs to reduce their development cost and maintenance [5–8] .

The work proposed in this paper aims at opening new research questions and proposing new tools for DSL maintenance

with a focus on the user documentation of DSLs. As advocated by Fowler, a “kind of generator [that comes with DSLs] would

define human readable documentation – the language workbench equivalent of javadoc. [...] There will still be a need to generate

web or paper documentation ” [9] . Documenting a DSL is indeed another major and time-consuming development task [1,3] .

This task, however, is required to promote DSLs, address their learning curve [3] , and limit the “language cacophony problem ”:

languages are hard to learn and the use of many languages will be much more complicated than using a single language [9] .

∗ Corresponding author.

E-mail addresses: gwendal.lemoulec@irisa.fr (G. Le Moulec), arnaud.blouin@irisa.fr (A. Blouin), valerie.gouranton@irisa.fr (V. Gouranton),

bruno.arnaldi@irisa.fr (B. Arnaldi).

https://doi.org/10.1016/j.cl.2018.07.006

1477-8424/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cl.2018.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2018.07.006&domain=pdf
mailto:gwendal.lemoulec@irisa.fr
mailto:arnaud.blouin@irisa.fr
mailto:valerie.gouranton@irisa.fr
mailto:bruno.arnaldi@irisa.fr
https://doi.org/10.1016/j.cl.2018.07.006

338 G. Le Moulec et al. / Computer Languages, Systems & Structures 54 (2018) 337–357

By studying parallels made between DSLs and APIs (Application Programming Interface) [1,10,11] , we identified four technical

properties that end-user DSL documentation tools should possess:

(1) Documentation must be complete, i.e., all the DSL concepts must have an up-to-date documentation; (2) Documen-

tation has to be contextualized according to the current need of the DSL users; (3) Maintaining documentation over several

platforms is a complex task that can lead to documentation obsoleteness; (4) Providing code examples to illustrate each

concept of a DSL is a time-consuming task.

Documentation is known as improving the usability of the documented artifact [12] . So, these four properties aim at

answering a more general challenge that is improving the usability of DSLs by improving their end user documentation.

The proposed approach focuses on textual and grammar-based DSLs. The approach produces end user documentation

from artifacts of the implementation phase of DSLs: the metamodel, the grammar, and models that cover all the concepts of

a DSL. For each concept of a DSL, the metamodel, the grammar, and a model are sliced [13,14] to keep their elements that

focus on this concept. A piece of documentation, dedicated to this concept, is then produced and is composed of: an illus-

trative example; explanations about the concept and its possible parameters, in natural language. These explanations are not

fully synthesized by our approach: metamodel documentation is extracted from the metamodel to be used in the generated

documentation. One benefit of the approach is its ability to capitalize on existing DSL artifacts to produce documentation for

different platforms. For example, the documentation are currently generated for two platforms: (1) in a Markdown format

to be easily integrated in wikis; (2) as Java code to be seamlessly integrated in the Xtext [5] DSL editor and then to provide

DSL users with live documentation by content assist.

Our generative process follows coverage criteria: the produced end user documentation explains all the concepts of the

DSL domain model (e.g., all the classes, attributes, and references of the DSL metamodel).

The proposal has been prototyped in Docywood , 1 built on top of the Eclipse Modeling Framework (EMF) [15] and Xtext.

We validated the proposal through an experiment that involves: 17 subjects; two third-part modeling DSLs, namely ThingML 2

[16] and Target Platform Definition, 3 designed for a computer science audience; two language designers of ThingML . The

results of the experiment exhibit qualitative benefits of the proposal with regard to the five DSL documentation challenges.

Both subjects and language designers identified several possible improvements. The quantitative results exhibit benefits

regarding the correctness of the created models when using the generated documentation in addition to the official one for

ThingML.

The paper is structured as follows. Section 2 introduces an example used throughout the paper to illustrate the ap-

proach. Section 3 explains the approach. Section 4 details the evaluation of the approach. Section 5 discusses related work.

Section 6 concludes the paper and gives insights for future work.

2. Problem statement

First, we introduce an illustrative example use throughout this paper to illustrate the approach. Then, we formalize the

problem to solve.

2.1. Illustrative example: a DSL for moving robots

We define a simple language, called Robot , for moving robots. Fig. 1 describes the documented metamodel of the Robot

DSL. A user can define a program (ProgramUnit) to move a robot with commands (Command). The commands are: move

forward (Move); rotate on itself following a given rotation angle (Turn); a specific while loop to execute commands while no

obstacle is in front of the robot (WhileNoObstacle). All the metamodel elements are documented (Fig. 1 shows the embedded

documentation of three elements, namely ProgramUnit , ProgramUnit.commands , and Move). The documentation, written by

language designers, is embedded in the metamodel. For example with EcoreTools , such a metamodel documentation consists

of annotations on the metamodel elements.

Listing 1 shows a Robot code snippet that follows the grammar of Listing 2 . A ProgramUnit surrounds its commands

with the begin and end tokens. The Move, Turn , and WhileNoObstacle commands respectively match the tokens move, turn ,

and whileNoObstacleAt , followed by their parameters declared between parentheses. A WhileNoObstacle command defines

sub-commands between brackets.

2.2. Overall objectives

Provide a support to automate the production of DSL documentation.

2.2.1. Technical properties

Software languages are software too [17] and relations between APIs (Application Programming Interface) and DSLs have

been established [1,10] . So, the relationship can be drawn between DSL and API documentation to precise the overall

1 See: https://github.com/arnobl/comlanDocywood
2 See http://thingml.org/
3 See https://github.com/mbarbero/fr.obeo.releng.targetplatform

http://thingml.org/

Download English Version:

https://daneshyari.com/en/article/6870909

Download Persian Version:

https://daneshyari.com/article/6870909

Daneshyari.com

https://daneshyari.com/en/article/6870909
https://daneshyari.com/article/6870909
https://daneshyari.com

