JID: COMLAN [m3Gsc;April 12, 2017;10:1]

Computer Languages, Systems & Structures 000 (2017) 1-27

Contents lists available at ScienceDirect

COMPUTER
LANGUAGES

Computer Languages, Systems & Structures

journal homepage: www.elsevier.com/locate/cl

Call Arity

Joachim Breitner

University of Pennsylvania, 3330 Walnut Street Philadelphia, PA 19104, USA

ARTICLE INFO ABSTRACT
Am'd_e history: Higher order combinators in functional programming languages can lead to code that
Received 24 June 2016 would be considerably more efficient if some functions’ definitions were eta-expanded.

Revised 6 January 2017
Accepted 14 March 2017
Available online xxx

Previous analyses were not always precise enough to allow that. In particular, this has
prevented foldl from efficiently taking part in list fusion.

Call Arity is an analysis that eta-expands functions according to how they are used. By
virtue of using a new cardinality analysis based on the notion of co-call graphs, it is suffi-
ciently precise even in the presence of recursion, and its inclusion in the Haskell compiler
GHC now enables the fusion of foldl-based combinators.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

After more than two decades of development of Haskell compilers, one has become slightly spoiled by the quality and
power of optimizations performed by the compiler. For example, list fusion allows us to write concise and easy to under-
stand code using general purpose combinators and list comprehensions and still get the efficiency of a tight loop that avoids
allocating the intermediate lists.

Unfortunately, not all list-processing functions took part in list fusion. In particular, left folds like foldl, foldl’, length
and derived functions like sum did not fuse, and the expression sum (filter f [42..2016]) still allocated and traversed one
list.

The issue is that in order to take part in list fusion, functions need to be expressed as right folds. In the case of foldl,
this requires higher-order parameters as in

foldl k z xs = foldr (\v fn z — fn (k z v)) id xs z.

The resulting fused code would be passing around and calling dynamically allocated function closures on the heap, which
is rather inefficient.

Gill noted that eta-expansion based on an arity analysis would help here [1]. Previous arity analyses, however, are not
precise enough to be able to clean up the code that results from a fusing foldl.

What makes eta-expanding function and thunks hard? Too much eta-expansion can destroy sharing, as we explain in
greater detail in Section 2.2. A conservative compiler must not suddenly duplicate computational work of unknown extent,
and therefore functions may only be eta-expanded as far as it is safe.

Consider the slightly contrived example in Fig. 1: Our goal is to eta-expand the definition of tA, which is a thunk re-
turning a function. For that to be safe, we need to ensure that it is always called with one argument, which is not obvious:
syntactically, the only use of tA is in goB, and there it occurs without an argument. But we see that goB is initially called

E-mail addresses: joachim@cis.upenn.edu, mail@joachim-breitner.de

http://dx.doi.org/10.1016/j.c1.2017.03.001
1477-8424/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article as: J. Breitner, Call Arity, Computer Languages, Systems & Structures (2017),
http://dx.doi.org/10.1016/j.c1.2017.03.001



http://dx.doi.org/10.1016/j.cl.2017.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cl
mailto:joachim@cis.upenn.edu
mailto:mail@joachim-breitner.de
http://dx.doi.org/10.1016/j.cl.2017.03.001
http://dx.doi.org/10.1016/j.cl.2017.03.001

JID: COMLAN [m3Gsc;April 12, 2017;10:1]

2 J. Breitner/Computer Languages, Systems & Structures 000 (2017) 1-27

let tA =if fathen ... else ...
in let goA x = if f (tB + x) then goA (x+1)
else x
tB = let goB y = if f y then goB (goA y)
else tA
ingoB01
in goA (goA 1)

Fig. 1. [s it safe to eta-expand tA?.

with two arguments. Furthermore, if two arguments are passed to goB, this function calls itself with two arguments as
well. Therefore, we know that goB calls tA always with one argument - done.

But tA is a thunk - i.e. not in head normal form - so even if there are many calls to tA, due to sharing, the predicate f a
is only evaluated once. If we were to eta-expand tA, that would no longer be a thunk and that possibly expensive predicate
would be evaluated for every call to tA! So we are only allowed to eta-expand tA if we know that it is called at most once.
This is tricky: tA is called from a recursive function goB, which itself is called from the mutual recursion consisting of goA
and tB, and that recursion is started multiple times!

Nevertheless we can know that tA is evaluated at most once: tB is also a thunk, so although it will be called multiple
times by the outer recursion, its right-hand side is only evaluated once. Furthermore, the recursion involving goB is started
once and stops when the call to tA happens. Together, this implies that we are allowed to eta-expand tA without losing any
work.

We have developed an analysis, dubbed Call Arity, that is capable of all of this reasoning and correctly detects that tA
can be eta-expanded. It is a combination of a standard forward arity analysis [1,2] with a novel cardinality analysis based
on co-call graphs. The latter determines for an expression and two variables whether a single evaluation of the expression
can possibly call both variables and - as a special case - which variables it calls at most once. We found that this is just
the right amount of information to handle tricky cases as in Fig. 1.

In particular, we make the following contributions:

1. We motivate why a precise arity analysis needs a sophisticated cardinality analysis (Section 3).

2. We present the Call Arity arity analysis together with the co-call graph based cardinality analysis (Section 4).

3. Call Arity is implemented in GHC, and enabled by default since version 7.10.1. We describe a few aspects of its imple-
mentation (Section 6).

4. With this analysis, the previously open problem of how to let foldl take part in list fusion while still obtaining well-
performing code (Section 2.1) is solved.

5. Our performance measurements (Section 5) show great improvements in some cases, a good overall effect and no in-
crease in allocations due to the addition of Call Arity.

The paper at hand is a revised, corrected and extended version of the conference publication from 2014 [3]. Parts of it
forms a chapter of the author’s thesis [4], which gives a more formal account of Call Arity, including a formal, machine-
checked proof that enabling Call Arity is safe, which is here summarized in Section 4.3.

2. Background

In the interest of a self-contained presentation, this section contains a primer on list fusion, including its implementation
in GHC based on rewrite rules. Furthermore, we explain how GHC's runtime implements function calls and why saturated
function calls are generally more efficient.

2.1. List fusion

Code like sum (filter f [42..2016]) is a good example for the style of programming that functional programming languages
excel at: More complex algorithms are created by composing small, single-purpose building blocks (Fig. 2) in a straightfor-
ward way. This style is pleasant to program in and reason about. It is less attractive, though, from a performance point
of view: This code, compiled without optimizations, will allocate a list data structure on the heap, traverse it to create a
second list of those elements for which the predicate f hold, and then traverse that list to sum the elements. Finally, all the
now unused list data structures will be released by the garbage collector.

Fortunately, there exists a well-known program transformation called list fusion [5], which can turn the code that we
want to write into the code that we want to run, where no lists are allocated.

The central idea is that list-producing code does not allocate the list constructors (:) and [] (which would normally be
passed to and deconstructed by the consumer) but rather uses functions provided by the consumer instead, passing the head
and the (already processed) tail directly. This requires the producer to abstract over the list constructors, and the consumer
to provide these functions at the right type:

Please cite this article as: J. Breitner, Call Arity, Computer Languages, Systems & Structures (2017),
http://dx.doi.org/10.1016/j.c1.2017.03.001



http://dx.doi.org/10.1016/j.cl.2017.03.001

Download English Version:

https://daneshyari.com/en/article/6870944

Download Persian Version:

https://daneshyari.com/article/6870944

Daneshyari.com


https://daneshyari.com/en/article/6870944
https://daneshyari.com/article/6870944
https://daneshyari.com

