Accepted Manuscript

Effective Implementation of Matrix-Vector Multiplication on Intel's AVX Multicore Processor

Somaia. A. Hassan, Mountasser M.M. Mahmoud, A.M. Hemeida, Mahmoud A. Saber

PII: \$1477-8424(17)30042-8 DOI: 10.1016/j.cl.2017.06.003

Reference: COMLAN 262

To appear in: Computer Languages, Systems & Structures

Received date: 19 March 2017 Revised date: 30 May 2017 Accepted date: 15 June 2017

Please cite this article as: Somaia. A. Hassan, Mountasser M.M. Mahmoud, A.M. Hemeida, Mahmoud A. Saber, Effective Implementation of Matrix-Vector Multiplication on Intel's AVX Multicore Processor, *Computer Languages, Systems & Structures* (2017), doi: 10.1016/j.cl.2017.06.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- Implementing dense matrix-vector multiplication kernels in parallel using Intel's advanced vector extension (AVX) instruction sets.
- The obtained results are compared using inline assembly versus intrinsic functions for programming.
- A comparative study to indicate the effects of two widely used C++ compilers: Intel C++ compiler (ICC) in Intel Parallel Studio XE 2017 against Microsoft Visual Studio C++ compiler 2015 (MSVC++) has been investigated.
- The performance of using intrinsic functions compared to the inline assembly demonstrates that the intrinsic functions has better performance than inline assembly by 1.15 and 1.23 using Intel compiler and by 1.29 and 1.29 using MSVC++ compiler for y = A. x and A^T. x respectively.
- Implementing single-precision matrix-vector multiplications algorithm in parallel using Intel's AVX instruction sets, memory access optimization, and OpenMP parallelization.
- The obtained results are compared against the latest version of Intel MKL 2017 SGEMV subroutines.
- The obtained results are compared using single-thread against multithreads.
- The obtained results of the proposed optimized algorithms were achieved a performance improvement of 18.2% and 14.1% on multi-core platform for (y = A, x) and $y = A^{T}$. x) respectively compared to the results are achieved using the last version of Intel Math Kernel Library 2017 (SGEMV) subroutines.

Download English Version:

https://daneshyari.com/en/article/6870994

Download Persian Version:

https://daneshyari.com/article/6870994

<u>Daneshyari.com</u>