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a b s t r a c t

An edge-colored graph G is said to be rainbow connected if between each pair of vertices
there exists a path which uses each color at most once. The rainbow connection number,
denoted by rc(G), is the minimum number of colors needed to make G rainbow connected.
Along with its variants, which consider vertex colorings and/or so-called strong colorings,
the rainbow connection number has been studied from both the algorithmic and graph-
theoretic points of view.

In this paper we present a range of new results on the computational complexity of
computing the four major variants of the rainbow connection number. In particular, we
prove that the Strong Rainbow Vertex Coloring problem is NP-complete even on graphs
of diameter 3, and also when the number of colors is restricted to 2. On the other hand,
we show that if the number of colors is fixed then all of the considered problems can be
solved in linear time on graphs of bounded treewidth. Moreover, we provide a linear-time
algorithm which decides whether it is possible to obtain a rainbow coloring by saving a
fixed number of colors from a trivial upper bound. Finally, we give a linear-time algorithm
for computing the exact rainbow connection numbers for three variants of the problem on
graphs of bounded vertex cover number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concept of rainbow connectivity was introduced by Chartrand, Johns, McKeon, and Zhang in 2008 [8] as an
interesting connectivity measure motivated by recent developments in the area of secure data transfer. Over the past years,
this strengthened notion of connectivity has received a significant amount of attention in the research community. The
applications of rainbow connectivity are discussed in detail for instance in the recent survey [25], and various bounds are
also available in [10,26].

An edge-colored graph G is said to be rainbow connected if between each pair of vertices a, b there exists an a − b path
which uses each color atmost once; such a path is called rainbow. Theminimumnumber of colors needed tomakeG rainbow
connected is called the rainbow connection number (rc), and the Rainbow Coloring problem asks to decide if the rainbow
connection number is upper-bounded by a number specified in the input. Precise definitions are given in Section 2.

The rainbow connection number and Rainbow Coloring have been studied from both the algorithmic and graph-
theoretic points of view. On one hand, the exact rainbow connection numbers are known for a variety of simple graph

✩ A shortened version of this paper has appeared in the proceedings of the 26th International Workshop on Combinatorial Algorithms (IWOCA) (Eiben
et al., 2015) [17].
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classes, such as wheel graphs [8], complete multipartite graphs [8], unit interval graphs [29], and threshold graphs [6]. On
the other hand,RainbowColoring is a notoriously hard problem. Itwas shownbyChakraborty et al. [5] that already deciding
if rc(G) ≤ 2 is NP-complete, and Ananth et al. [1] showed that for any k > 2 deciding rc(G) ≤ k is NP-complete. In fact,
Chandran and Rajendraprasad [6] strengthened this result to hold for chordal graphs. In the same paper, the authors gave a
linear time algorithm for rainbow coloring split graphs which form a subclass of chordal graphs with at most onemore color
than the optimum. Basavaraju et al. [2] gave an (r + 3)-factor approximation algorithm to rainbow color a general graph of
radius r . Later on, the inapproximability of the problemwas investigated by Chandran and Rajendraprasad [7]. They proved
that there is no polynomial time algorithm to rainbow color graphs with less than twice the minimum number of colors,
unless P = NP. For chordal graphs, they gave a 5/2-factor approximation algorithm, and proved that it is impossible to do
better than 5/4, unless P = NP.

Several variants of the notion of rainbow connectivity have also been considered. Indeed, a similar concept was
introduced for vertex-colored graphs by Krivelevich and Yuster [22]. A vertex-colored graph H is rainbow vertex connected
if there is a path whose internal vertices have distinct colors between every pair of vertices, and this gives rise to the
rainbow vertex connection number (rvc). The strong rainbow connection number (src) was introduced and investigated also
by Chartrand et al. [10]; an edge-colored graph G is said to be strong rainbow connected if between each pair of vertices a, b
there exists a shortest a−b path which is rainbow. The combination of these two notions, strong rainbow vertex connectivity
(srvc), was studied in a graph theoretic setting by Li et al. [24].

Not surprisingly, the problems arising from the strong and vertex variants of rainbow connectivity are also hard.
Chartrand et al. showed that rc(G) = 2 if and only if src(G) = 2 [8], and hence deciding if src(G) ≤ k is NP-complete
for k = 2. The problem remains NP-complete for k > 2 for bipartite graphs [1], and also for split graphs [21]. Furthermore,
the strong rainbow connection number of an n-vertex bipartite graph cannot be approximated within a factor of n1/2−ϵ ,
where ϵ > 0 unless NP = ZPP [1], and the same holds for split graphs [21]. The computational aspects of the rainbow
vertex connection numbers have received less attention in the literature. Through the work of Chen et al. [12] and Chen
et al. [11], it is known that deciding if rvc(G) ≤ k is NP-complete for every k ≥ 2. However, to the best of our knowledge,
the complexity of deciding whether srvc(G) ≤ k (the k-SRVC problem) has not been previously considered.

In this paper,wepresent newpositive andnegative results for all four variants of the rainbowcoloringproblemsdiscussed
above.

• In Section 3, we prove that k-SRVC is NP-complete for every k ≥ 3 even on graphs of diameter 3. Our reduction relies on
an intermediate step which proves the NP-hardness of a more general problem, the k-Subset Strong Rainbow Vertex
Coloring problem. We also provide bounds for approximation algorithms (under established complexity assumptions),
see Corollary 6, and tighten the hardness result to additionally cover 2-SRVC.

• In Section 4, we show that all of the considered problems can be formulated in monadic second order (MSO) logic. In
particular, this implies that for every fixed k, all of the considered problems can be solved in linear time on graphs of
bounded treewidth, and the vertex variants can be solved in cubic time on graphs of bounded clique-width.

• In Section 5, we investigate the problem from a different perspective: we ask whether, given an n-vertex graph G and an
integer k, it is possible to color G using k colors less than the known upper bound. Here we employ a win–win approach
and show that this problem can be solved in time O(n) for any fixed k.

• In Section 6, we show that in the general case when k is not fixed, three of the considered problems admit linear-time
algorithms on graphs of bounded vertex cover number. This is also achieved by exploiting a win–win approach, where
we show that either k is bounded by a function of the vertex cover number and hencewe can apply the result of Section 4,
or k is sufficiently large which allows us to exploit the structure of the graph and solve the problem directly.

A shortened version of this paper has appeared in the proceedings of the 26th International Workshop on Combinatorial
Algorithms (IWOCA) [17].

2. Preliminaries

2.1. Graphs and rainbow connectivity

We refer to [15] for standard graph-theoretic notions. We use [i] to denote the set {1, 2, . . . , i}. All graphs considered in
this paper are simple and undirected. The degree of a vertex is the number of its incident edges, and a vertex is a pendant if it
has degree 1. We will often use the shorthand ab for the edge {a, b}. For a vertex set X , we use G[X] to denote the subgraph
of G induced on X .

A vertex coloring of a graph G = (V , E) is a mapping from V to N, and similarly an edge coloring of G is a mapping from
E to N; in this context, we will often refer to the elements of N as colors. An a − b path P of length p is a finite sequence of
the form (a = v0, e0, v1, e1, . . . , b = vp), where v0, v1, . . . , vp are distinct vertices and e0, . . . , ep−1 are distinct edges and
each edge ej is incident to vj and vj+1. An a− b path of length p is a shortest path if every a− b path has length at least p. The
diameter of a graph G is the length of its longest shortest path, denoted by diam(G). Given an edge (vertex) coloring α of G,
a color x ∈ N occurs on a path P if there exists an edge (an internal vertex) z on P such that α(z) = x.

A vertex or edge coloring of G is rainbow if between each pair of vertices a, b there exists an a − b path P such that each
color occurs at most once on P; in this case we say that G is rainbow connected or rainbow colored. We denote by rc(G) the
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