
Discrete Applied Mathematics ( ) –

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The caterpillar-packing polytope
Javier Marenco ∗

Sciences Institute, National University of General Sarmiento, Argentina
Computer Science Department, FCEyN, University of Buenos Aires, Argentina

a r t i c l e i n f o

Article history:
Received 23 December 2015
Received in revised form 8 February 2017
Accepted 30 March 2017
Available online xxxx

Keywords:
Caterpillar-packing
Facets

a b s t r a c t

A caterpillar is a connected graph such that the removal of all its vertices with degree 1
results in a path. Given a graph G, a caterpillar-packing of G is a set of vertex-disjoint (not
necessarily induced) subgraphs ofG such that each subgraph is a caterpillar. In thisworkwe
consider the set of caterpillar-packings of a graph, which corresponds to feasible solutions
of the 2-schemes strip cutting problem with a sequencing constraint (2-SSCPsc) presented by
F. Rinaldi and A. Franz in 2007. We study the polytope associated with a natural integer
programming formulation of this problem. We explore basic properties of this polytope,
including a lifting lemma and several facet-preserving operations on the graph. These
results allow us to introduce several families of facet-inducing inequalities.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A caterpillar is a connected graph such that the removal of all its vertices with degree 1 results in a path, see Fig. 1(a).
Given a graph G = (V , E), the subgraph induced by an edge subset C ⊆ E is GC = (VC , C), where VC ⊆ V is the set of
endpoints of the edges in C . A caterpillar-packing of G is a set C = {C1, . . . , Ck} such that (a) Ci ⊆ E and GCi is a caterpillar,
for i = 1, . . . , k, and (b) VCi ∩ VCj = ∅, for i ≠ j. In other words, a caterpillar-packing of G is a set of vertex-disjoint (not
necessarily induced) subgraphs of G such that each subgraph is a caterpillar.

The interest in caterpillar-packings comes from an integer programming approach to the 2-schemes strip cutting problem
with a sequencing constraint (2-SSCPsc), a problem that arises in the context of corrugated cardboardmachines. The 2-SSCPsc
was first presented in [13], where it was shown to be N P -hard. In this problem, a set O of orders must be scheduled for
production, and the corrugating machine can manufacture up to two orders at the same time. Any feasible combination of
two orders to be produced is called a 2-scheme, whereas any feasible way of producing one order is called a 1-scheme in
this context. Since the orders may require different quantities to be produced, more than one scheme may be necessary to
produce a given order, hence a standard cutting stock approach is employed to solve the 2-SSCPsc. However, the 2-SSCPsc
asks for an additional constraint: every ordermust appear in consecutive schemes. This implies that the solution is no longer
a set of schemes but a sequence of schemes instead, such that all the orders are produced up to the required quantities and
such that every order appears in consecutive schemes. This last constraint makes the problem quite difficult in practice.

If we define the schemes graph to be SG = (O, S), where O is the set of orders and S = {ij: there exists a feasible
2-schemewith orders i and j}, then the 2-schemespresent in any feasible solution induce a caterpillar-packing in SG [13]. This
observation motivated the introduction in [10] of an integer programming model aiming to exploit this structure. Although
the computational results reported in this work were quite reasonable, optimality is not always achieved in large real-life
instances, thus suggesting that a comprehensive exploration of the associated polytope may be necessary in order to make
progress at solving the 2-SSCPsc. In this work we start this issue.
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Fig. 1. (a) A caterpillar. (b) The bipartite claw. (c) The incomplete bipartite claw, with v its dangling vertex.

If C ⊆ E is a set of edges of G, denote by χC
∈ {0, 1}|E| its characteristic vector, i.e., χC

e = 1 if and only if e ∈ C , for every
e ∈ E. We define the caterpillar-packing polytope associated to the graph G to be

CPP(G) = conv{χC
: C is the edge set of a caterpillar-packing of G}.

Families of valid inequalities for CPP(G) may be incorporated to a cutting-plane-based procedure for the 2-SSCPsc, thus
motivating the study of this polytope.

Caterpillar-based structures in graphs have been tackled with integer programming techniques in previous works. The
minimum spanning caterpillar problem asks for a spanning caterpillar minimizing a linear cost function that assigns different
costs to leaf edges and edges from the central path. Integer programming and heuristic approaches for this problem are
presented in [14,15]. Theoretical developments concerning its approximability include [5,6]. This problem is related to
the minimum ring-star problem, where the central path of the spanning caterpillar is replaced by a cycle. Both integer
programming [7,8] and heuristic [3,4] approaches have been pursued for this problem. The natural generalization of this
problem asking for more than one cycle is called them-ring-star problem and has been studied in [1,12,16,17].

This paper is organized as follows. Section 2 presents a natural integer programming formulation whose associated
polytope is CPP(G) and provides some straightforward properties of this polytope. In particular, facetness results for the
model constraints and a lifting lemma are presented, and these results are useful in the following sections. This polytope
admits facet-preserving procedures, which take as input a facet-inducing inequality and generate a slightly larger valid
inequality that, under additional hypotheses, also induces a facet. Section 3 introduces these procedures and proves them
correct. Section 4 presents preliminary computational experiments with these procedures. Finally, Section 5 states some
conclusions and open problems. The results contained in this work appeared without proof in the extended abstract [11].

2. Formulation and basic properties

We introduce in this section a natural integer programming formulation for CPP(G), based on the following classical
result. The bipartite claw is the graph depicted in Fig. 1(b).

Theorem 1 ([9]). A connected graph H is a caterpillar if and only if H does not contain any cycle and any bipartite claw.

We assume E ≠ ∅ throughout this work. We introduce a binary variable xe for each e ∈ E, such that xe = 1 if and only
if the solution includes the edge e. We denote by C(G) the set of all (not necessarily induced) cycles in G, and by B(G) the
set of all (not necessarily induced) bipartite claws of G, in both cases regarded as sets of edges. In this setting, CPP(G) is the
convex hull of the points x ∈ {0, 1}|E| satisfying the following constraints:

e∈C

xe ≤ |C | − 1 ∀ C ∈ C(G), (1)
e∈B

xe ≤ 5 ∀ B ∈ B(G). (2)

The cycle constraints (1) ask feasible solutions not to contain any cycle, whereas the bipartite claw constraints (2) forbid
bipartite claws. Hence, Theorem 1 ensures that integer points in CPP(G) represent caterpillar-packings of G. Note that the
definition of a caterpillar-packing does not ask every vertex to be included in some caterpillar (e.g., the empty set of edges
is a caterpillar-packing), so we do not have constraints asking for such conditions.

The set of caterpillar-packings of G is an independence system [2], thus implying some of the following straightforward
properties. We define ue ∈ R|E| to be the unit vector associated with the edge e, and 0 ∈ R|E| to be the all-zeros vector with
|E| entries.

Proposition 1. (i) The polytope CPP(G) is full-dimensional.
(ii) The (valid) inequality xe ≥ 0 is facet-inducing, for any e ∈ E.
(iii) The (valid) inequality xe ≤ 1 is facet-inducing, for any e ∈ E.
(iv) If πx ≤ π0 is any facet-inducing inequality different from xe ≥ 0 for any e ∈ E, then π ≥ 0.
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