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a b s t r a c t

A flowgraph G = (V , A, s) is a digraph such that there is a dipath from s to u for every
vertex u in G. A vertex w dominates a vertex u if and only if all dipaths in G from s to u
pass through w. The vertex s dominates trivially any vertex in G. In this work, we define
two sets called dominator cover and junction partition. A dominator cover in G is a set of
vertices that includes s and non-trivial dominators for all vertices in G. A junction partition
B = {B1, . . . ,Bk} is a partition of V which satisfies the following property: if vertex u
belongs to Bi and vertex v belongs to Bj (i ̸= j), then there are internally vertex-disjoint
dipaths from s to u and from s to v, for short, s is a junction of u and v. The first part of
this work shows that, in flowgraphs, the minimum size of a dominator cover is equal to
the maximum size of a junction partition. The second part describes some applications
for this relation, such as, a new correctness proof of an algorithm that finds a maximum
junction partition in reducible flowgraphs; and good time and space complexity algorithms
for problems related to junctions and nearest common ancestors in acyclic digraphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is the full version of the extended abstract published and presented in VIII Latin-American Algorithms, Graphs,
and Optimization Symposium (LAGOS’15) [11].

In [10] is described an efficient algorithm that receives an acyclic digraph D and a vertex s of D, and returns a partition B
of the set of vertices of D such that, taking any pair of vertices {u, v}, u and v are in different parts of B if and only if there are
vertex-disjoint dipaths from s to u and from s to v, for short, s is a junction of u and v. In that paper we observed a min–max
relation in reducible flowgraphs. Now, we generalize this relation for any flowgraph.

Frank andGyárfás [13], Ramachandran [20], Chen and Zang [5], andXiao [25] have studiedmin–max relations in reducible
flowgraphs. Let G be such a graph. A collection of cycles C = {C1, C2, . . . , Ck} of G is called a vertex-disjoint cycle packing of G
if each vertex v in G appears at most once in C. A feedback vertex set of G is a set of vertices S such that every cycle in G has
a vertex in S. Frank and Gyárfás showed that the maximum cardinality of a vertex-disjoint cycle packing of G is equal to the
minimum cardinality of a feedback vertex set of G. They conjectured that the maximum cardinality of an arc-disjoint cycle
packing of G is also equal to the minimum cardinality of a feedback arc set of G. Ramachandran, based on her algorithm for
finding a minimum weighted feedback arc set [19], showed the Frank and Gyárfás’ conjecture.

Chen and Zang observed that the Ramachandran’s result could be adapted to the case where the reducible flowgraph is
weighted. In a weighted reducible flowgraph, each arc e (vertex v) is associated to a non-negative integer w(e) (w(v)). Given
a weighted reducible flowgraph G, the collection C = {C1, C2, . . . , Ck} is a weighted cycle packing if each arc e (vertex v)
appears at mostw(e) (w(v)) times in cycles of C. The weight of a feedback arc set is given by the sum of weights of all its arcs.
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Fig. 1. A flowgraph rooted in s.

Chen and Zang [5] showed that, in weighted reducible flowgraphs, the maximum cardinality of a weighted cycle packing (as
just defined) is equal to the minimum weighted feedback arc set.

Still considering weighted reducible flowgraphs, a weighted feedback arc set packing is defined in a similar way to
the definition of weighted cycle packing. A weighted feedback arc set packing is a collection of feedback arc sets F =
{F1, F2, . . . , Fk} such that each arc e can appear at most w(e) times in feedback arc sets of F . The weight of a cycle is defined
as the sum of the weights of its arcs. Xiao [25] showed that, in a weighted reducible flowgraph, the maximum cardinality of
a weighted feedback arc set packing is equal to the minimum weight of cycles.

We will describe a min–max relation that involves structures in flowgraphs named as dominator cover and junction
partition. As we will see, find out relations among structures in these graphs could be interesting to solve some problems ef-
ficiently, such as, finding a representative (or all) nearest common ancestor(s) in acyclic digraphs, and finding a representative
(or all) junction(s) in acyclic digraphs.

A flowgraph G = (V , A, s) is a digraph where the vertex s reaches any vertex in G, i.e., there is in G a dipath from s to any
other vertex in G. The vertex s is called the root of G. An example of a flowgraph is given in Fig. 1.

We always assume that |V | = n and |A| = m. A vertex w dominates a vertex u if and only if all dipaths from s to u pass
through w. We say that vertex s trivially dominates all vertices of G. Any vertex different from s which dominates u is called
a non-trivial dominator of u. If there are at least two vertex-disjoint dipaths from s to u, then the only non-trivial dominator
of u is vertex u itself.

Given a flowgraph G = (V , A, s), we define a dominator cover A in G as a set that contains s, and at least one non-
trivial dominator for each vertex u (different from s) in G. Formally, a dominator cover in G is a set A = ∪u∈GAu where
As = {s}, and Au is a non-empty set of non-trivial dominators of u for all u different from s in G. Note that we could
have more than one dominator cover in G. For example, a possible dominator cover in the flowgraph in Fig. 1 is the set
A1
= {s, a, b, c, e, f , g, h, i, k}.
To see why A1 is a dominator cover, observe that vertices s, a, b, c , e, f , h, i and k have in-degree more than 1, and they

are non-trivial dominators from themselves (except swhich is in the set by definition). The vertices a, c , g , and i are parents
of vertices whose in-degree is equal to 1, so they are non-trivial dominators of the remaining vertices. However, the smaller
set A2

= {s, a, b, e, f , h, i, k} is also a dominator cover: a dominates (non-trivially) a, c , d, g and j; i dominates i, l and m;
and the remaining vertices in A2 dominate themselves. Our first interest is to find out a cover with the minimum number of
dominators.

Given a flowgraph G = (V , A, s), the set B = {B1, . . . ,Bk} is a junction partition of G if it is a partition of V , and the
following property holds:

if vertex u belongs to Bi and vertex v belongs to Bj (i ̸= j), then s is a junction of vertices u and v.

The size of a junction partition is the number of subsets belonging to it.
The partition {{s}, {a, c, d, g, h, j, k}, {b, e, f , i, l,m}} is a junction partition of size 3 of the flowgraph in Fig. 1. However,

the partition given next is a junction partition of size 4: {{s}, {a, c, d, g, h, j, k}, {b, e, f }, {i, l,m}}. It is not so hard to check
that these partitions are both junction partitions of the flowgraph considered. Another interest of this work is to find out a
junction partition with maximum size.

Considering yet a flowgraph G = (V , A, s), we describe next important concepts for this work such as immediate
dominator, farthest dominator, and dominator tree. For any vertex u ̸= s, the immediate dominator of u is the unique vertex
w ̸= u that dominates u and is dominated by all dominators of u other than u. The concept of immediate dominator appears
in many works such as [17] and [14]. We denote the immediate dominator w of vertex u by id(u) = w. For each vertex
u in G (u ̸= s), there is a single vertex w which dominates immediately u. The graph Tid = (Vid, Aid) where Vid = V and
Aid = {id(u) → u : for all u different from s in V } is a tree rooted in s, called the dominator tree of G. It is well known that
a vertex w dominates a vertex u if and only if w is an ancestor of u in Tid, that is, the dominator tree of G is a compact
representation of the dominator set for each vertex in G. In Fig. 2, we illustrate the dominator tree of the flowgraph in Fig. 1.
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