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a  b  s  t  r  a  c t

The  evolution  of an advancing  fluid  front formed  by  a gravity-driven  thin film  flowing  down  a  planar
substrate  is considered,  with  particular  reference  to  the  presence  of  Marangoni  stresses  and/or  sur-
face  topography.  The  system  is  modelled  using  lubrication  theory  and  solved  via  an  efficient,  adaptive
multigrid  method  that  incorporates  automatic,  error-controlled  grid  refinement/derefinement  and  time
stepping. The  detailed  three  dimensional  numerical  results  obtained  reveal  that,  for  the  problems  inves-
tigated,  while  both  of  the  above  features  affect the  merger  of rivulets  by  either  delaying  or promoting
the  same,  topography  influences  the  direction  of growth.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Thin film flows over substrate containing heterogeneities in the
form of micro-scale topographical irregularities arise in many nat-
urally occuring biological, medical and industrial processes [1]. The
resulting complex and interesting fluid dynamics involved, as well
as the stability of the advancing front formed by a spreading film,
make the topic of rivulet formation in particular both important
and fascinating. The observed formation of rivulets on an inclined
homogeneous substrate was first reported by Huppert [2], who
recorded that the advancing front became unstable leading to the
development of periodic rivulets that grew in time. There have been
many subsequent investigations, mainly numerical, of the phe-
nomenon; for example Diez and Kondic [3] explored gravity-driven
flow on inclined planar and patterned substrates, discovering that
the inclination angle affects the shape and length of the rivulet pat-
terns formed. Cazabat et al. [4] investigated experimentally the case
of a film driven, in opposition to gravity, by thermal gradients and
found that, in a similar way to gravity-driven films, rivulets form at
the advancing front – the surface tension gradients present having
a large influence on the associated dynamics. Eres et al. [5] devel-
oped a model to replicate their experimental set up and predicted
the break up of the associated rivulets at low velocities.
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Kondic and Diez [6] investigated the affect of small pertur-
bations in the substrate on a stable front; the resulting rivulet
formation was  found to be very similar to that observed when con-
tact line perturbations are applied to the advancing front. The use
of striped substrates in the control of rivulet spacing has also been
investigated, Kondic and Diez [7]. Zhao and Marshall [8] modelled
the chemical heterogeneity of a substrate by varying the contact
angle the fluid makes with it; striped surfaces are reported to pro-
vide a means of controlling the wavelength of the emerging rivulets,
either widening or decreasing the spacing between them.

The focus of the present work is that of a fully wetting, three
dimensional, gravity-driven thin film, encompassing flow on pla-
nar substrates and ones containing microscale topographies. Also
considered are Marangoni effects, which can arise when thermal
gradients are present. The flow behaviour is modelled via lubri-
cation theory; the associated equation set governing the evolving
flow is solved accurately using an efficient multigrid methodol-
ogy, incorporating both error controlled, automatic space and time
adaptivity – the first time such flows have been solved in this man-
ner.

2. Problem formulation

The problem of interest is shown schematically in Fig. 1. It con-
sists of a thin fluid film of thickness H, flowing down a substrate
(width, Wp, length, Lp) inclined at angle � to the horizontal; the
volumetric flow rate is Q0 per unit width. The fluid is considered to
be incompressible with constant density, �, and viscosity, �, and
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Fig. 1. Schematic diagram of rivulet flow down an inclined planar substrate con-
taining rectangular topography (height/depth S0, width, Wt , and length, Lt).

variable surface tension, �, given by � = �0�̃ = �0 + �X with �0 the
value of surface tension at X = 0 and �

(
= ∂�/∂X

)
a constant surface

tension gradient [4]. The film is considered to be fully wetting; a
precursor film of thickness, H*, located ahead of the advancing front,
alleviates the singularity associated with the attendant contact line
[6,8,9]. The long-wave approximation is invoked on the assumption
that the asymptotic film thickness, H0, is small compared to the cap-
illary length, L0 = H0/(6Ca)1/3, where Ca = �U0/�0∼O

(
�3

)
� 1 is the

capillary number, that is H0/L0 = � � 1; the characteristic velocity
U0 = 3Q0/2H0. In which case, together with the introduction of the
following scalings [10]:

(x, y) = (X, Y)
L0

, z = Z

H0
, h (x, y, t) = H (X, Y, T)

H0
,

t = U0T

L0
, s (x, y) = S (X, Y)

H0
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,

(u, v, w) =
(

U
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,

V
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,

W

�U0

)
, h∗ = H∗

H0
,

the Navier–Stokes and continuity equations, for no slip at the sub-
strate together with the usual free-surface stress and kinematic
boundary conditions [11], reduce to the following coupled equation
set:

∂h

∂t
= ∂

∂x

[
h3

3

(
∂p

∂x
− 2

)
− �̃h2

2

]
+ ∂
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[
h3

3

(
∂p

∂y

)]
, (1)

p = − �3

Ca
�̂∇2 (h + s) + 2� (h + s − z) cot �, (2)

where h, p, �̃ (= H0� / �U0) and s are the dimensionless film
height, pressure, constant surface tension gradient and topogra-
phy height/depth, respectively. The topography, s(x, y), with height
(depth) s0 = S0/H0 > 0 (s0 < 0), length lt = Lt/L0 and width wt = Wt/L0,
defined using arctangent functions [12], takes the form:

s (x, y) = s0
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[
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2
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(
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2
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(3)

with the centre of the topography at (xt, yt). The steepness of the
topography is controlled by 	 with:

b0 = 4
[

tan−1
(

1
2	

)]2
. (4)

When topographies are present, they are restricted to simple
square peak and trench features with 	 = 0.01.

At the upstream boundary a fully developed film thickness is
prescribed (h = 1) while the downstream boundary is set such that

h(lp, y) = h* with zero flux conditions defined for h and p at the other
boundaries, namely:
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where lp = Lp/L0 and wp = Wp/L0. The initial film profile consists of
a front perturbed with a superposition of N modes with random
length, lj ∈ [−0.2, 0.2], and differing wavelength, 
0,j, as in [6] via:

h(x, y) = 0.5

{
1 + h∗ − (1 − h∗) tanh

[(
x − xf (y)

)
ı

]}
, (5)

xf (y) = xu −
N∑

j=1

lj cos
(

2�y/
0,j

)
, (6)

where xu is the position of the slope of the unperturbed front, ı is
the steepness of the profile (taken here to be 0.01) and 
0,j = 2wp/j
for j = 1, . . . , N. The results are independent of the initial condi-
tion provided N is sufficiently large; a value of N = 50 is found to
be adequate.

3. Method of solution

3.1. Difference equations

Discretising Eqs. (1) and (2) using second order central-
differencing [10], remembering that �̃ is constant, leads to the
following corresponding finite-difference analogues:
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defined at all points (i, j) of the computational domain,
(

0, lp
)

×(
0, wp

)
; the prefactors are obtained using linear interpolation

between neighbouring grid points and are given by, for example,
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3
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and similarly for the other prefactors. The mesh size is denoted
by � and is taken to be the same in both the x and y directions.
The time derivatives are discretised via the implicit, second-order
Crank Nicolson method.

3.2. Adaptive multigrid solver

Equations (7) and (8) are solved using an efficient multigrid
method employing a combined full approximation storage (FAS)
algorithm and full multigrid (FMG) strategy, on successively finer
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