ARTICLE IN PRESS

Discrete Applied Mathematics [(]]] .

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Recent results on containment graphs of paths in a tree

Liliana Alcón^{a,*}, Noemí Gudiño^{a,b}, Marisa Gutierrez^{a,b}

^a Departamento de Matemática, Facultad Ciencias Exactas, Universidad Nacional de La Plata, Argentina ^b CONICET, Argentina

ARTICLE INFO

Article history: Available online xxxx

Keywords: Posets Comparability graphs Geometric containment models

ABSTRACT

In this paper, motivated by the questions posed by Spinrad in Spinrad (2003) and Golumbic and Trenk (2004), we investigate those posets that admit a containment model mapping vertices into paths of a tree and their comparability graphs, named *CPT* posets and *CPT* graphs, respectively. We present a necessary condition to be *CPT* and prove it is not sufficient. We provide further examples of *CPT* posets *P* whose dual P^d is non *CPT*. Thus, we introduce the notion of *dually-CPT* and *strong-CPT* posets. We demonstrate that, unlike what happens with posets admitting a containment model using interval of the line, the dimension and the interval dimension of *CPT* posets is unbounded. On the other hand, we find that the dimension of a *CPT* poset is at most the number of leaves of the tree used in the containment model. We give a characterization of *CPT* (also *dually-CPT* and *strong-CPT*. split posets by a family of forbidden subposets. We prove that every tree is *strong-CPT*. © 2017 Elsevier B.V. All rights reserved.

1. Introduction and previous results

A partially ordered set or poset is a pair $\mathbf{P} = (X, P)$ where X is a finite non-empty set, whose elements are called *vertices*, and P is a reflexive, antisymmetric and transitive binary relation on X. As usual, we write $x \le y$ in **P** for $(x, y) \in P$; and x < y in **P** when $(x, y) \in P$ and $x \ne y$. If x < y or y < x, we say that x and y are *comparable* in **P** and write $x \perp y$. The sets $\{x \in X : x < z\}$ and $\{x \in X : z < x\}$ are denoted by D(z) and U(z) respectively. We let $D[z] = D(z) \cup \{z\}$ and $U[z] = U(z) \cup \{z\}$. When $D(z) = \emptyset$, we say that z is a *minimal element* of **P**; and z is *maximal* when $U(z) = \emptyset$. Two vertices z and z' are *twins* (*false twins*), if $D(z) \cup U(z) = D(z') \cup U(z')$ and z and z' are comparable (incomparable).

A *chain* in **P** is a subposet whose vertices are pairwise comparable. The *height* of **P** is one less than the number of vertices in its maximum chain.

The *restriction* of the relation P to a subset Y of X is denoted by P(Y). We call P(Y) to the subposet (Y, P(Y)) of **P**.

A containment model $M_{\mathbf{P}}$ of a poset $\mathbf{P} = (X, P)$ maps each element x of X into a set M_x in such a way that x < y in \mathbf{P} if and only if M_x is a proper subset of M_y , i.e.

$$x < y$$
 in $\mathbf{P} \Leftrightarrow M_x \subset M_y$.

We identify the containment model M_P with the set family $(M_x)_{x \in X}$. Notice that a containment model can always be obtained by mapping each vertex x into the set D[x]. We say that a model is *injective* when no two vertices are mapped into a same set.

Many classes of posets, grouped together under the generic name of *geometric containment orders*, have been defined by imposing geometric conditions to the sets in which the elements of the poset are mapped: for example, they may be intervals

^k Corresponding author. E-mail addresses: liliana@mate.unlp.edu.ar (L. Alcón), noemigudino@mate.unlp.edu.ar (N. Gudiño), marisa@mate.unlp.edu.ar (M. Gutierrez).

https://doi.org/10.1016/j.dam.2018.04.009

0166-218X/© 2017 Elsevier B.V. All rights reserved.

Fig. 1. These graphs together with the complements of the graphs in Fig. 2 constitute the family of minimal forbidden induced subgraphs for comparability graphs.

of the line, angular regions in the plane, *d*-boxes in the *d*-Euclidean space, *d*-spheres in the *d*-Euclidean space [4,9,16,20]. In [9], it is proved that each poset admits a containment model using subtrees of a star (a tree with a unique vertex with degree greater than one). As reported in [9], Corneil and Golumbic (see [8]) considered those posets that admit a containment model mapping vertices into paths of a tree, and their comparability graphs, called *CPT posets* and *CPT graphs*, respectively. They observed that the 8-wheel W_8 has one of its transitive orientations being a *CPT* poset (where the central vertex is a sink, i.e., its path is contained in each of the other 8 paths), but when reversing the orientations of the edges (the dual, where the central vertex is a source), it is not a *CPT* poset. Their same argument applies to every wheel W_{2k} for $k \ge 3$. Spinrad in [14] and Golumbic and Trenk in [10] called for investigating the properties of *CPT* posets and *CPT* graphs. In this paper, we have initiated such a study, presenting new results on the topic.

The comparability graph G_P of a poset P = (X, P) is the simple graph with vertex set $V(G_P) = X$ and edge set $E(G_P) = \{xy : x \perp y\}$. We say that two posets are *associated* if their comparability graphs are isomorphic. A graph *G* is a *comparability graph* if there exists some poset **P** such that $G = G_P$.

A transitive orientation \vec{E} of a graph G = (V, E) is an assignment of one of the two possible directions, \vec{xy} or \vec{yx} , to each edge $xy \in E$ in such a way that if $\vec{xy} \in \vec{E}$ and $\vec{yz} \in \vec{E}$ then $\vec{xz} \in \vec{E}$. The graphs whose edges can be transitively oriented are exactly the comparability graphs [6]. Furthermore, given a transitive orientation \vec{E} of a graph G = (V, E), we let $\mathbf{P}_{\vec{E}}$ denote the poset $(V, P_{\vec{E}})$ where u < v in $\mathbf{P}_{\vec{E}}$ if and only if $\vec{uv} \in \vec{E}$. The comparability graph of $\mathbf{P}_{\vec{E}}$ is G. Thereby, the transitive orientations of G are put in one-to-one correspondence with the posets whose comparability graphs are G.

Gallai provides the following characterization of comparability graphs by a family of minimal forbidden induced subgraphs.

Theorem 1 ([5]). A graph is a comparability graph if and only if none of its induced subgraphs is isomorphic to a graph in Fig. 1 or to the complement of a graph in Fig. 2.

For further information on comparability graphs see [2,7,16].

Dushnik and Miller defined the *dimension of a poset* \mathbf{P} , denoted by $dim(\mathbf{P})$, as the minimum number of linear orders whose intersection is \mathbf{P} [3]. Trotter et al. proved that if \mathbf{P} and \mathbf{P}' are associated posets then $dim(\mathbf{P}) = dim(\mathbf{P}')$, leading to the definition of *dimension of a comparability graph* [19,16].

The *dual* of a poset $\mathbf{P} = (X, P)$ is the poset $\mathbf{P}^d = (X, P^d)$ where x < y in \mathbf{P}^d if and only if y < x in \mathbf{P} . Notice that \mathbf{P} and \mathbf{P}^d are associated and, obviously, $dim(\mathbf{P}) = dim(\mathbf{P}^d)$.

In [3], it was proved that $dim(\mathbf{P}) \leq 2$ if and only if \mathbf{P} admits a containment model mapping vertices into intervals of the line. Therefore, posets with dimension at most 2 also appear in the literature as *containment orders of intervals*, we will write *CI* posets for short. Comparability graphs of interval containment orders, or *CI* graphs, have been widely studied and characterized in different ways.

Theorem 2 ([3,13]). *The following statements are equivalent.*

- 1. G is a CI graph.
- 2. *G* is a comparability graph with $dim(G) \le 2$.
- 3. G and its complement G are comparability graphs.
- 4. G is a permutation graph [2].

The previous theorem together with Gallai's characterization of comparability graphs provides a characterization of *CI* graphs by induced forbidden subgraphs. In addition, observe the following simple result:

Download English Version:

https://daneshyari.com/en/article/6871122

Download Persian Version:

https://daneshyari.com/article/6871122

Daneshyari.com