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a b s t r a c t

A vertex of a connected graph is a contour vertex provided the eccentricity of the vertex
is at least as large as that of each of its neighbors. We consider the question of whether
the set S of contour vertices of a connected graph is geodetic, i.e., whether every vertex of
the graph lies on a shortest path (geodesic) between some pair of vertices in S. In general,
it is known that when long induced cycles are forbidden (for chordal graphs) the answer
is in the affirmative, but otherwise (even for weakly chordal graphs) the answer is in the
negative. For bipartite graphs, it is known that when long induced cycles are allowed, the
answer is in the negative. In contrast, we show thatwhen long induced cycles are forbidden
in bipartite graphs, namely for chordal bipartite graphs, the answer is in the affirmative. Our
result also shows that while the answer is in the negative for bipartite graphs and weakly
chordal graphs, for a graph that is both bipartite and weakly chordal, the answer is in the
affirmative.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this work all graphs are finite, simple, and connected, unless noted otherwise. Let G = (V , E) be a graph. A family
C of subsets of V is a graph convexity, or convexity, if it satisfies two properties: (i) V , ∅ belong to C; (ii) C is closed under
intersections. The elements of C are called convex sets. In the recent past, several papers have been published on graph
convexity [1,4,10,14–16,18,19,22,23]. For general information about convexity see [26].

In this work we consider the concept of geodesic convexity, where a set of vertices S is convex if it is formed by all vertices
lying on a geodesic between any pair of vertices of S. A set of vertices S is geodetic if every vertex of the graph belongs to
a geodesic between some pair of vertices in S. Geodesic convexity has been studied in different contexts such as convex
partitions, geodetic sets, geodetic number, hull number, and convexity number [2,6,12,13]. For a survey about geodesic
convexity see [25].

In [8], the authors investigated whether certain specific sets of vertices in a graph were geodetic; here, the authors were
concerned with what they considered to be ‘‘boundary vertices’’ in graphs. In particular, the contour Ct(G) of a graph G
was defined in [8] as follows: v ∈ V (G) belongs to Ct(G) provided eccentricity of v is at least as large as that of each of the
neighbors of v. The issue of whether the set of contour vertices of a graph always constitutes a geodetic set was then studied.
Then, and subsequently, the problem has been studied for several structured classes of graphs [3,7,6,17]. We frequently use
contour of a graph to refer to the set of contour vertices of the graph.

✩ A preliminary version of this paper appeared in the proceedings of LAGOS 2015 (Artigas and Sritharan, 2015 [4]).
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Fig. 1. A perfect (weakly chordal) graph whose contour is not geodetic [7].
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Fig. 2. Graph, with diameter k ≥ 5, whose contour is not geodetic [3]. The corresponding pairs of vertices from the k − 3 vertices on ‘‘top’’ and the k − 3
at the ‘‘bottom’’ are connected by a matching.

Given graphs G and H , by G contains H we mean G contains H as an induced subgraph. Let Pk, k ≥ 1, denote an induced
path on k vertices. Ck, k ≥ 4, denotes an induced cycle on k vertices. A 2K2 is the complement of a C4. A Ck, k ≥ 5, is a hole,
and an antihole is the complement of a hole. A house is the complement of a P5. A domino is the bipartite graph obtained from
a cycle on six vertices by adding exactly one chord. A gem is the complement of the disjoint union of a P1 and a P4. A graph
is chordal if it does not contain any Ck, k ≥ 4. Finally, a graph is weakly chordal if it does not contain any holes or antiholes.

It was proved in [8] that the contour of distance hereditary graphs, namely graphs without a house, hole, domino, or a
gem, is a geodetic set. An example was also given in [8] to show that the contour of a graph, in general, need not be geodetic;
specifically, this example contains a hole on 7 vertices and hence is not perfect. Subsequently, the example in Fig. 1 was
given in [7] to show that there exists a permutation graph, and hence a perfect graph, whose contour is not geodetic. On the
positive side, it was shown in [7] that the contour of a chordal graph is geodetic. Recently, the results on distance hereditary
graphs and chordal graphs were generalized in [17] to show that the contour of an hhd-free graph, namely a graph without
a house, hole, or a domino, is geodetic. The class of weakly chordal graphs is even more general than the class of hhd-free
graphs. However, the example in Fig. 1 shows that the contour of a weakly chordal graph need not be geodetic.

The question of whether the contour of a graph belonging to a class of graphs is geodetic was posed in [7] for the classes
of cochordal (complements of chordal), bipartite, and parity graphs. In [3], the question was answered in the affirmative for
cochordal graphs and in the negative for each of bipartite and parity graphs. More specifically, the example from [7] was
generalized in [3] into a family of graphs in each of which the contour is not geodetic. The thrust of this family, shown in
Fig. 2, is to show that there exists a family of general graphswith diameter k ≥ 5 such that the contour of anymember of the
family is not geodetic. In contrast, it was shown in [3] that for every graph with diameter at most 4, the contour is geodetic.
It was further shown in [3] that in the case of bipartite graphs, if the diameter is at most 7, then the contour is geodetic, but
in contrast, there exists a family of bipartite graphs with diameter 8 + k, k ≥ 0, for each member of which the contour is
not geodetic; we refer the reader to Fig. 3.

As far aswhether the contour of a graph is geodetic is concerned, every negative example known thus far contains a house
or a hole. In the case of bipartite graphs, even the smallest of themembers of the families given in [3] contains induced cycles
on 8 or more vertices; thus, when long induced cycles are allowed in bipartite graphs, the answer is in the negative [3]. In
summary, it is known in general that when long induced cycles are forbidden (for chordal graphs) the answer is in the
affirmative, but otherwise (even for weakly chordal graphs) the answer is in the negative. For bipartite graphs, it is known
thatwhen long induced cycles are allowed, the answer is in the negative. In contrast, we show thatwhen long induced cycles
are forbidden in bipartite graphs, namely for chordal bipartite graphs, the answer is in the affirmative; a bipartite graph is
chordal bipartite if it does not contain any C2k, k ≥ 3. Our result also shows that while the answer is in the negative for each
of bipartite graphs and weakly chordal graphs, for a graph that is both bipartite and weakly chordal (for a chordal bipartite
graph), the answer is in the affirmative.

We note that it has recently been proved [24] that the contour of a bridged graph is geodetic. Our techniques are different
from those employed in amajority of the previous results [7,8,17,24] andwe rely on structural properties of chordal bipartite
graphs to make inductive arguments; we elaborate on this further in Section 3. In order to discuss this, we first present in
Section 3 an inductive proof to show that the contour of a chordal graph is geodetic using its structural properties.

2. Preliminaries

Let G = (V , E) be a graph with vertex set V and edge set E, where |V | = n and |E| = m. For S ⊆ V ,G[S] denotes the
subgraph of G induced by S.
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