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a b s t r a c t

Let G be a connected bipartite graph with a perfect matching and the minimum degree
at least two. The concept of an anti-forcing edge in G was introduced by Li in Li (1997).
One known generalized version for an anti-forcing edge is an anti-forcing set S, which is
a set of edges of G such that the spanning subgraph G − S has a unique perfect matching.
In this paper, we introduce a new generalization of an anti-forcing edge: an anti-forcing
path and an anti-forcing cycle. We show that the existence of an anti-forcing edge in G is
equivalent to the existence of an anti-forcing path or an anti-forcing cycle in G. Then we
show that G has an edge that is both forcing and anti-forcing if and only if G is an even
cycle. In addition, e-anti-forcing paths and e-anti-forcing cycles in hexagonal systems are
identified. The parallel concepts of forcing-paths and forcing-cycles of G are also presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The notion of the forcing edge first appeared in a 1991 paper [7] on polyhexes by Harary, Klein and Živković, where they
studied one fundamental aspect of a perfect matching M: a subset S ⊆ M with the minimum cardinality that completely
determines M , and the cardinality of such a subset S is called the forcing number of M . The same concept was introduced
by Klein and Randić [8] in 1987 under the name innate degree of the freedom of a Kekulé structure. An edge of a connected
graph is called a forcing edge (or, a forcing double edge) if it is contained in exactly one perfectmatching of the graph. Forcing
edges have been investigated intensively for hexagonal systemswhich are closely related to the study ofmolecule resonance
structures in benzenoid hydrocarbons, where a hexagonal system (or, a polyhex) is a 2-connected plane bipartite graph such
that each finite face is a unit hexagon. For a survey on the topic of forcing perfect matchings, the reader is referred to [1]. For
related research on non-bipartite graphs, the readers may refer to the papers [14,18] and the references therein.

In 1997, Li [10] introduced the concept of an anti-forcing edge in the name of a forcing single edge when studying
hexagonal systems. In the same paper, all hexagonal systems with a forcing single edge were characterized. An edge e of
a graph G is called an anti-forcing edge (or, a forcing single edge) if the spanning subgraph G − e has a unique perfect
matching. A generalized version for an anti-forcing edge is an anti-forcing set S, which is a set of edges of G such that the
spanning subgraph G − S has a unique perfect matching. The anti-forcing number of a graph was introduced by Vukiěević
and Trinajstić [12] as the minimum cardinality of an anti-forcing set of the graph. A lot of research work has been done on
anti-forcing numbers, for example, see [4–6,9,13,15,19].

In the current paper, graphs considered are connected bipartite graphs with a perfect matching and theminimum degree
at least two. To further explore the concept of an anti-forcing edge e in such a graph G, we introduce the concepts of
e-anti-forcing paths and e-anti-forcing cycles. We show that the existence of an anti-forcing edge in G is equivalent to the
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existence of an anti-forcing path or an anti-forcing cycle in G. This enables us to get the result that G has an edge that is
both forcing and anti-forcing if and only if G is an even cycle. In addition, this allows us to identify e-anti-forcing paths and
e-anti-forcing cycles in hexagonal systems. The parallel concepts of forcing-paths and forcing-cycles in this type of graphs
are also presented.

2. Preliminaries

Graphs in our paper are simple and finite. In a graph G, the set of all vertices adjacent to a vertex v is called the
neighborhood of v and denoted by NG(v). The vertex degree of v in G is the cardinality of NG(v) and denoted by degG(v).
The minimum degree of G is the minimum vertex degree of all vertices in G and denoted by δ(G). A vertex of G is called
a pendant vertex if it is a degree-1 vertex of G. Let α and β be positive integers. An edge of G is called an (α, β)-edge if
its two end vertices have degrees α and β in G, respectively. A pendant edge of G is an (α, 1)-edge of G. A matching edge
deletion of an edge e of G [7] is to delete the end vertices of e together with their incident edges including the edge e itself.
A perfect matching (or, 1-factor) of a graph is a set of disjoint edges that covers all vertices of the graph. The key idea for
an anti-forcing edge or a forcing edge of a graph G is based on the uniqueness of a perfect matching for a certain subgraph:
deleting an anti-forcing edge of G results in a spanning subgraph that has a unique perfect matching, and a matching edge
deletion of a forcing edge of G results in either an empty graph or an induced subgraph with a unique perfect matching. Let
e = uv be an edge of Gwith two end vertices u and v. The spanning subgraph of G obtained by removing an edge e is denoted
by G − e, and the induced subgraph of G obtained by a matching edge deletion of e is denoted by G − {u, v}. In general, for a
subset U of V (G), we use G−U to denote the induced subgraph of G obtained by removing all vertices from U together with
their incident edges. A bipartite graph is a simple and finite graph whose vertices can be colored properly with two colors
such that any two adjacent vertices have different colors. In the rest of this paper, all graphs considered are bipartite graphs
with a perfect matching, unless specified otherwise. We also assume that vertices of a bipartite graph are properly colored
in black and white. By Lemma 4.3.2 in [11], we have the following proposition.

Proposition 2.1 ([11]). Any bipartite graph (can be disconnected) with a unique perfect matching has two degree-1 vertices that
are in different colors.

It follows that any bipartite graphwith δ(G) > 1 and a perfectmatching has at least two perfectmatchings. By the remark
after Theorem 1 in [10], we have the following theorem.

Theorem 2.2 ([10]). Let G be a connected bipartite graph with δ(G) > 1. Then an edge e = uv of G is an anti-forcing edge if and
only if e is a (2, 2)-edge and G has two forcing edges different from e that are incident to u and v, respectively.

By Theorem 2.2, we can see that for a connected bipartite graph G with the minimum degree at least two, the existence
of an anti-forcing edge implies the existence of a forcing edge in G. But it is not true conversely. For example, the hexagonal
systemgiven in Fig. 1 has two forcing edges (twoperipheral edges belonging to the hexagon centered atO) but no anti-forcing
edges. The following result follows immediately from Theorem 2.2. It also appeared in a recent paper [6].

Corollary 2.3. Every edge of a connected bipartite graph G is anti-forcing if and only if G is an even cycle.

We provided the corresponding result of the above corollary for forcing edges [2], which generalizes a main result of
Harary et al. in [7] from polyhexes to connected bipartite graphs.

Theorem 2.4 ([2]). Every edge of a connected bipartite graph G is forcing if and only if G is an even cycle or an edge.

Proposition 2.5. Assume that G is a simple and finite graph. Let G′ be a subgraph of G obtained by a matching edge deletion of
a pendant edge of G. Then G has a unique perfect matching if and only if G′ is empty or G′ has a unique perfect matching.

We omit the proof of the above proposition since it is trivial. Using Propositions 2.1 and 2.5, we can obtain an algorithm
to determine whether a bipartite graph with a pendant edge has a unique perfect matching or not by repeatedly performing
matching edge deletions of pendant edges, which is similar to the algorithm given by Harary et al. in [7].

All hexagonal systems in this paper are assumed to be drawn in a position such that edges in one direction are vertical.
Let H be a hexagonal system. Then a vertex of H belongs to at most three hexagons. A vertex of H is called an interior vertex
if it is shared by three hexagons, and an exterior vertex otherwise. The periphery of H is the boundary cycle consisting of all
its exterior vertices. Any edge on the periphery of H is called a peripheral edge of H , and any hexagon of H with a peripheral
edge is called a peripheral hexagon of H . Two hexagons of H are said to be adjacent if they have a common edge. The inner
dual H∗ of a hexagonal system H is the graph each vertex of which corresponds to the center of a hexagon of H and two
vertices are adjacent in H∗ if the corresponding two hexagons are adjacent in H . A hexagonal system is called a hexagonal
chain if its inner dual is a path or a single vertex. Furthermore, a hexagonal chain is said to be a linear hexagonal chain if its
inner dual is a straight path or a single vertex, and a nonlinear hexagonal chain otherwise.

The following concepts (illustrated in Fig. 1) were introduced in [16] to characterize hexagonal systemswhose resonance
graph has a pendant edge, and later used in [17] to characterize hexagonal systems with a forcing edge.
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