ARTICLE IN PRESS

Discrete Applied Mathematics [(]]] .

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the representation number of a crown graph

Marc Glen^a, Sergey Kitaev^{a,*}, Artem Pyatkin^b

^a Department of Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
^b Sobolev Institute of Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia

ARTICLE INFO

Article history: Received 30 April 2017 Received in revised form 12 January 2018 Accepted 7 March 2018 Available online xxxx

Keywords: Word-representable graph Crown graph Cocktail party graph Representation number

ABSTRACT

A graph G = (V, E) is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if xy is an edge in E. It is known (Kitaev and Pyatkin, 2008) that any word-representable graph G is k-word-representable for some k, that is, there exists a word w representing G such that each letter occurs exactly k times in w. The minimum such k is called G's representation number.

A crown graph (also known as a cocktail party graph) $H_{n,n}$ is a graph obtained from the complete bipartite graph $K_{n,n}$ by removing a perfect matching. In this paper, we show that for $n \ge 5$, $H_{n,n}$'s representation number is $\lceil n/2 \rceil$. This result not only provides a complete solution to the open Problem 7.4.2 in Kitaev and Lozin (2015), but also gives a negative answer to the question raised in Problem 7.2.7 in Kitaev and Lozin (2015) on 3-word-representability of bipartite graphs. As a byproduct, we obtain a new example of a graph class with a high representation number.

Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved.

1. Introduction

Suppose that w is a word over some alphabet and x and y are two distinct letters in w. We say that x and y alternate in w if after deleting in w all letters but the copies of x and y we either obtain a word $xyxy \cdots$ (of even or odd length) or a word $yxyx \cdots$ (of even or odd length).

A graph G = (V, E) is *word-representable* if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if xy is an edge in E. For example, the cycle graph on 4 vertices labelled by 1, 2, 3 and 4 in clockwise direction can be represented by the word 14213243.

There is a long line of research on word-representable graphs, which is summarized in the recently published book [8]. The roots of the theory of word-representable graphs are in the study of the celebrated Perkins semigroup [10,13] which has played a central role in semigroup theory since 1960, particularly as a source of examples and counterexamples. However, the most interesting aspect of word-representable graphs from an algebraic point of view seems to be the notion of a semi-transitive orientation [6], which generalizes partial orders. It was shown in [6] that a graph is word-representable if and only if it admits a semi-transitive orientation.

More motivation points to study word representable graphs include the fact exposed in [8] that these graphs generalize several important classes of graphs such as *circle graphs* [4], 3-*colourable graphs* [1] and *comparability graphs* [12]. Relevance of word-representable graphs to scheduling problems was explained in [6] and it was based on [5]. Furthermore, the study of word-representable graphs is interesting from an algorithmic point of view as was explained in [8]. For example, the *Maximum Clique problem* is polynomial time solvable on word-representable graphs [8] while this problem is generally NP-complete [3]. Finally, word-representable graphs is an important class among other graph classes considered in the

* Corresponding author.

E-mail address: sergey.kitaev@cis.strath.ac.uk (S. Kitaev).

https://doi.org/10.1016/j.dam.2018.03.013

0166-218X/Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Glen, et al., On the representation number of a crown graph, Discrete Applied Mathematics (2018), https://doi.org/10.1016/j.dam.2018.03.013.

ARTICLE IN PRESS

M. Glen et al. / Discrete Applied Mathematics 🛚 (💵 🖿) 💵 – 💵

Fig. 1. The crown graph $H_{n,n}$ for n = 1, 2, 3, 4.

Table 1Representing $H_{n,n}$ as a concatenation of n permutations.

п	Representation of $H_{n,n}$ by concatenation of n permutations
1	11′1′1
2	12'21'21'12'
3	123'32'1'132'23'1'231'13'2'
4	1234'43'2'1'1243'34'2'1'1342'24'3'1'2341'14'3'2'

literature that are defined using words. Examples of other such classes of graphs are *polygon–circle graphs* [11] and *word-digraphs* [2].

It was shown in [9] that if a graph *G* is word-representable then it is *k*-word-representable for some *k*, that is, *G* can be represented by a *k*-uniform word *w*, i.e. a word containing *k* copies of each letter. In such a context we say that *w k*-represents *G*. For example, the cycle graph on 4 vertices mentioned above can be 2-represented by the word 14213243. Thus, when discussing word-representability, one need only consider *k*-uniform words. A nice property of such words is that any cyclic shift of a *k*-uniform word represents the same graph [9]. (If a word w = uv for two non-empty words *u* and *v*, then the word *vu* is a cyclic shift of *w*.) The minimum *k* for which a word-representable graph *G* is *k*-word-representable is called the *G*'s representation number.

The following observation follows trivially from the definitions.

Observation 1. The class of complete graphs coincides with the class of 1-word-representable graphs. In particular, the complete graph's representation number is 1.

A less trivial, but still simple fact mentioned in [6] is that the class of 2-word-representable graphs is precisely the class of circle graphs [4], which are defined by intersecting chords. Circle graphs were generalized to polygon–circle graphs [11], where edges are defined by intersecting inscribed *k*-gons for a fixed *k*. Note that except for the case of k = 2, such graphs are *not* the same as *k*-word-representable graphs. Indeed, in the case of *k*-word-representable graphs, $k \ge 3$, we have an edge *xy* if and only if *x* and *y* alternate, while in the case of polygon–circle graphs defined by intersecting inscribed *k*-gons, *xy* is an edge if and only if no cyclic shift of the subword induced by *x* and *y*, when reading the labels of the polygon corners around the circle in either direction, is $x \cdots xy \cdots y$.

1.1. Representation of crown graphs

A bipartite graph is a graph whose vertices can be divided into two disjoint sets *X* and *Y* such that every edge connects a vertex in *X* to one in *Y*. A bipartite graph is *complete* if every vertex in *X* is connected to each vertex in *Y*. $K_{n,m}$ denotes the complete bipartite graph with the disjoint sets of sizes *n* and *m*, respectively. A *crown graph* (also known as a *cocktail party graph*) $H_{n,n}$ is a graph obtained from the complete bipartite graph $K_{n,n}$ by removing a perfect matching. Formally, $V(H_{n,n}) = \{1, ..., n, 1', ..., n'\}$ and $E(H_{n,n}) = \{ij' | i \neq j\}$. First four examples of such graphs are presented in Fig. 1.

Crown graphs are of special importance in the theory of word-representable graphs. More precisely, they appear in the construction of graphs requiring long words representing them [6]. Note that these graphs also appear in the theory of partially ordered sets as those defining partial orders that require many linear orders to be represented.

Each crown graph, being a bipartite graph, is a *comparability graph* (that is, a transitively orientable graph), and thus it can be represented by a concatenation of permutations [10]. Moreover, it follows from [6], and also is discussed in Section 7.4 in [8], that $H_{n,n}$ can be represented as a concatenation of *n* permutations but it cannot be represented as a concatenation of a fewer permutations. These results on crown graphs were obtained by exploiting the idea of representation of a poset as an intersection of several linear orders. Thus, the representation number of $H_{n,n}$ is at most *n*. See Table 1 (appearing in [8]) for the words representing the graphs in Fig. 1 as concatenation of permutations.

It was noticed in [7] that, for example, $H_{3,3}$ can be represented using two copies of each letter as 3'32'1'132'23'1'231'1 (as opposed to three copies used in Table 1 to represent it) if we drop the requirement to represent crown graphs as concatenation of permutations. On the other hand, $H_{4,4}$ is the three-dimensional cube, which is the *prism graph* Pr₄, so that

Download English Version:

https://daneshyari.com/en/article/6871136

Download Persian Version:

https://daneshyari.com/article/6871136

Daneshyari.com