On the representation number of a crown graph

Marc Glen ${ }^{\text {a }}$, Sergey Kitaev ${ }^{\text {a,* }}$, Artem Pyatkin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
${ }^{\text {b }}$ Sobolev Institute of Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia

ARTICLE INFO

Article history:

Received 30 April 2017
Received in revised form 12 January 2018
Accepted 7 March 2018
Available online xxxx

Keywords:

Word-representable graph
Crown graph
Cocktail party graph
Representation number

Abstract

A graph $G=(V, E)$ is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if $x y$ is an edge in E. It is known (Kitaev and Pyatkin, 2008) that any word-representable graph G is k-word-representable for some k, that is, there exists a word w representing G such that each letter occurs exactly k times in w. The minimum such k is called G 's representation number.

A crown graph (also known as a cocktail party graph) $H_{n, n}$ is a graph obtained from the complete bipartite graph $K_{n, n}$ by removing a perfect matching. In this paper, we show that for $n \geq 5, H_{n, n}$'s representation number is $\lceil n / 2\rceil$. This result not only provides a complete solution to the open Problem 7.4.2 in Kitaev and Lozin (2015), but also gives a negative answer to the question raised in Problem 7.2 .7 in Kitaev and Lozin (2015) on 3-wordrepresentability of bipartite graphs. As a byproduct, we obtain a new example of a graph class with a high representation number.

Crown Copyright © 2018 Published by Elsevier B.V. All rights reserved.

1. Introduction

Suppose that w is a word over some alphabet and x and y are two distinct letters in w. We say that x and y alternate in w if after deleting in w all letters but the copies of x and y we either obtain a word xyxy \cdots (of even or odd length) or a word $y x y x \cdots$ (of even or odd length).

A graph $G=(V, E)$ is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if $x y$ is an edge in E. For example, the cycle graph on 4 vertices labelled by $1,2,3$ and 4 in clockwise direction can be represented by the word 14213243.

There is a long line of research on word-representable graphs, which is summarized in the recently published book [8]. The roots of the theory of word-representable graphs are in the study of the celebrated Perkins semigroup [10,13] which has played a central role in semigroup theory since 1960, particularly as a source of examples and counterexamples. However, the most interesting aspect of word-representable graphs from an algebraic point of view seems to be the notion of a semitransitive orientation [6], which generalizes partial orders. It was shown in [6] that a graph is word-representable if and only if it admits a semi-transitive orientation.

More motivation points to study word representable graphs include the fact exposed in [8] that these graphs generalize several important classes of graphs such as circle graphs [4], 3-colourable graphs [1] and comparability graphs [12]. Relevance of word-representable graphs to scheduling problems was explained in [6] and it was based on [5]. Furthermore, the study of word-representable graphs is interesting from an algorithmic point of view as was explained in [8]. For example, the Maximum Clique problem is polynomial time solvable on word-representable graphs [8] while this problem is generally NP-complete [3]. Finally, word-representable graphs is an important class among other graph classes considered in the

[^0]

Fig. 1. The crown graph $H_{n, n}$ for $n=1,2,3,4$.

Table 1
Representing $H_{n, n}$ as a concatenation of n permutations.

n	Representation of $H_{n, n}$ by concatenation of n permutations
1	$11^{\prime} 1^{\prime} 1$
2	$12^{\prime} 21^{\prime} 21^{\prime} 12^{\prime}$
3	$123^{\prime} 32^{\prime} 1^{\prime} 132^{\prime} 23^{\prime} 1^{\prime} 231^{\prime} 13^{\prime} 2^{\prime}$
4	$1234^{\prime} 43^{\prime} 2^{\prime} 1^{\prime} 1243^{\prime} 34^{\prime} 2^{\prime} 1^{\prime} 1342^{\prime} 24^{\prime} 3^{\prime} 1^{\prime} 2341^{\prime} 14^{\prime} 3^{\prime} 2^{\prime}$

literature that are defined using words. Examples of other such classes of graphs are polygon-circle graphs [11] and worddigraphs [2].

It was shown in [9] that if a graph G is word-representable then it is k-word-representable for some k, that is, G can be represented by a k-uniform word w, i.e. a word containing k copies of each letter. In such a context we say that w-represents G. For example, the cycle graph on 4 vertices mentioned above can be 2-represented by the word 14213243 . Thus, when discussing word-representability, one need only consider k-uniform words. A nice property of such words is that any cyclic shift of a k-uniform word represents the same graph [9]. (If a word $w=u v$ for two non-empty words u and v, then the word $v u$ is a cyclic shift of w.) The minimum k for which a word-representable graph G is k-word-representable is called the G's representation number.

The following observation follows trivially from the definitions.
Observation 1. The class of complete graphs coincides with the class of 1-word-representable graphs. In particular, the complete graph's representation number is 1 .

A less trivial, but still simple fact mentioned in [6] is that the class of 2-word-representable graphs is precisely the class of circle graphs [4], which are defined by intersecting chords. Circle graphs were generalized to polygon-circle graphs [11], where edges are defined by intersecting inscribed k-gons for a fixed k. Note that except for the case of $k=2$, such graphs are not the same as k-word-representable graphs. Indeed, in the case of k-word-representable graphs, $k \geq 3$, we have an edge $x y$ if and only if x and y alternate, while in the case of polygon-circle graphs defined by intersecting inscribed k-gons, $x y$ is an edge if and only if no cyclic shift of the subword induced by x and y, when reading the labels of the polygon corners around the circle in either direction, is $x \cdots x y \cdots y$.

1.1. Representation of crown graphs

A bipartite graph is a graph whose vertices can be divided into two disjoint sets X and Y such that every edge connects a vertex in X to one in Y. A bipartite graph is complete if every vertex in X is connected to each vertex in Y. $K_{n, m}$ denotes the complete bipartite graph with the disjoint sets of sizes n and m, respectively. A crown graph (also known as a cocktail party graph) $H_{n, n}$ is a graph obtained from the complete bipartite graph $K_{n, n}$ by removing a perfect matching. Formally, $V\left(H_{n, n}\right)=\left\{1, \ldots, n, 1^{\prime}, \ldots, n^{\prime}\right\}$ and $E\left(H_{n, n}\right)=\left\{i j^{\prime} \mid i \neq j\right\}$. First four examples of such graphs are presented in Fig. 1.

Crown graphs are of special importance in the theory of word-representable graphs. More precisely, they appear in the construction of graphs requiring long words representing them [6]. Note that these graphs also appear in the theory of partially ordered sets as those defining partial orders that require many linear orders to be represented.

Each crown graph, being a bipartite graph, is a comparability graph (that is, a transitively orientable graph), and thus it can be represented by a concatenation of permutations [10]. Moreover, it follows from [6], and also is discussed in Section 7.4 in [8], that $H_{n, n}$ can be represented as a concatenation of n permutations but it cannot be represented as a concatenation of a fewer permutations. These results on crown graphs were obtained by exploiting the idea of representation of a poset as an intersection of several linear orders. Thus, the representation number of $H_{n, n}$ is at most n. See Table 1 (appearing in [8]) for the words representing the graphs in Fig. 1 as concatenation of permutations.

It was noticed in [7] that, for example, $H_{3,3}$ can be represented using two copies of each letter as $3^{\prime} 32^{\prime} 1^{\prime} 132^{\prime} 23^{\prime} 1^{\prime} 231^{\prime} 1$ (as opposed to three copies used in Table 1 to represent it) if we drop the requirement to represent crown graphs as concatenation of permutations. On the other hand, $H_{4,4}$ is the three-dimensional cube, which is the prism graph Pr_{4}, so that

https://daneshyari.com/en/article/6871136

Download Persian Version:

https://daneshyari.com/article/6871136

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: sergey.kitaev@cis.strath.ac.uk (S. Kitaev).

