ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the chromatic index of join graphs and triangle-free graphs with large maximum degree

A. Zorzi, L.M. Zatesko*

Federal University of Fronteira Sul, Chapecó, Brazil

ARTICLE INFO

Article history: Received 31 December 2015 Received in revised form 12 October 2016 Accepted 17 October 2016 Available online xxxx

Keywords: Edge-colouring Join graphs Overfull conjecture

ABSTRACT

Deciding if the edges of a graph with *n* vertices and maximum degree Δ can be coloured with Δ colours is an NP-complete problem, but a conjecture proposed by Hilton and Chetwynd in 1984, along with a result of Niessen of 2001, suggests the existence of a linear-time algorithm for the problem when restricted to graphs with $\Delta \ge n/2$. Join graphs satisfy this restriction, but no polynomial-time algorithm for determining the chromatic index of a join graph is known. This paper presents some sufficient conditions for join graphs with $\Delta \ge n/2$, proving that they all can be coloured with Δ colours when triangle-free.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A simple graph *G* is an undirected graph without loops or multiple edges, whose vertex set is denoted by V(G) and whose edge set is denoted by E(G). The *Classification Problem* is the problem of determining the *chromatic index* of a given simple graph *G*, i.e. the minimum number of colours needed to colour all edges of *G* in a way that the same colour is not assigned to adjacent edges. Denoting the chromatic index and the maximum degree of *G* respectively by $\chi'(G)$ and $\Delta(G)$, Vizing's Theorem [24], which uses a recolouring procedure to colour the edges of any graph *G* with no more than $\Delta(G) + 1$ colours, implies that we have either $\chi'(G) = \Delta(G)$, in which case *G* is said to be *Class* 1, or $\chi'(G) = \Delta(G) + 1$, in which case *G* is said to be *Class* 2. Deciding whether a graph is *Class* 1 is an NP-complete problem [11], even when restricted, for example, to perfect graphs [1], to tripartite regular graphs [18] or to triangle-free cubic graphs [15]. Notwithstanding, the problem can be solved in polynomial time for some graph classes, such as bipartite [14] and complete multipartite graphs [10], graphs with a universal vertex [21] and graphs with acyclic core [8] (the *core* of a graph *G*, denoted by $\Lambda[G]$, is the subgraph induced by all vertices of degree Δ).

A graph *G* with *n* vertices and more than $\Delta(G) \lfloor n/2 \rfloor$ edges, possible only when *n* is odd, cannot be *Class* 1, since a colour can be assigned to at most $\lfloor n/2 \rfloor$ edges. Such a graph is said to be *overfull*. Furthermore, if *G* is not necessarily overfull, but has an overfull subgraph *H* with $\Delta(G) = \Delta(H)$, then *G* is also *Class* 2, and in this case we say that *G* is *subgraph-overfull* (shortly *SO*) and that *H* is a Δ -*overfull* subgraph of *G*. Not every *Class* 2 graph is *SO* (e.g. the Petersen graph, shown in Fig. 1), but, for graphs with large maximum degree, this equivalence is suspected to be true.

In 1984, Hilton and Chetwynd proposed the following conjecture:

Hilton and Chetwynd's conjecture ([2]). A graph *G* with *n* vertices and maximum degree $\Delta \ge n/2$ is *Class* 2 if and only if it is *SO*.

http://dx.doi.org/10.1016/j.dam.2016.10.022 0166-218X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: A. Zorzi, L.M. Zatesko, On the chromatic index of join graphs and triangle-free graphs with large maximum degree, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.10.022

^{*} Correspondence to: Universidade Federal da Fronteira Sul, Av. Fernando Machado, 108-E, Centro, Chapecó, SC, CEP 89802-112, Brazil. *E-mail addresses:* alesom.zorzi@gmail.com (A. Zorzi), leandro.zatesko@uffs.edu.br (L.M. Zatesko).

ARTICLE IN PRESS

A. Zorzi, L.M. Zatesko / Discrete Applied Mathematics 🛚 (💵 💷)

Fig. 1. The Petersen graph.

This conjecture was later replaced by the *Overfull Conjecture* [3,9], which covers the former and states that the equivalence holds for graphs with $\Delta > n/3$. The restriction seems to be the best possible, since P^* , the *Class* 2 graph obtained from the Petersen graph by removing any vertex, is not SO and has $\Delta = n/3$. Moreover, Niessen showed in 1994 [19] that a graph with $\Delta \ge n/2$ has at most one Δ -overfull induced subgraph, which can be found in polynomial time. In 2001 [20], Niessen also showed that a graph with $\Delta > n/3$ has at most three Δ -overfull induced subgraphs, which can be found in polynomial time by the *Algorithm* 2 of the paper. In turn, the *Algorithm* 1 of the paper is an improvement of the algorithm of 1994 which can run in linear time.

The *join* operation of two graphs G_1 and G_2 , denoted by $G_1 * G_2$, is the graph defined by $V(G_1 * G_2) = V(G_1) \cup V(G_2)$ and

$$E(G_1 * G_2) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1) \text{ and } v \in V(G_2)\}.$$

A graph *G* is said to be a *join graph* if there are two graphs G_1 and G_2 such that $G = G_1 * G_2$. If G_1 and G_2 are not the same K_1 graph, we can assume without loss of generality that $V(G_1)$ and $V(G_2)$ are disjoint, because, if they are not, we can simply replace G_1 and G_2 respectively by the graphs G'_1 and G'_2 defined by:

$$V(G'_{1}) = V(G_{1}); \qquad E(G'_{1}) = E(G_{1}) \cup \{uv : u, v \in V(G_{1}) \cap V(G_{2})\}; \\ V(G'_{2}) = V(G_{2}) \setminus V(G_{1}); \qquad E(G'_{2}) = E(G_{2}) \setminus \{uv \in E(G_{2}) : u \in V(G_{1})\}.$$

As a graph is a *join graph* if and only if it is a K_1 or its *complement* is disconnected, join graphs can be recognised in linear time with the algorithms presented in [12]. Since it can be easily shown that a join graph G has no more than $2\Delta(G)$ vertices, Hilton and Chetwynd's Conjecture suggests, along with Algorithm 1 of [20], that the chromatic index of a join graph can be decided in linear time. However, only partial results are known. Assuming without loss of generality that $n_1 = |V(G_1)| \leq |V(G_2)| = n_2$, some sufficient conditions for $G = G_1 * G_2$ to be *Class* 1 are:

- (1) $\Delta(G_1) > \Delta(G_2)$ [22];
- (2) $\Delta(G_1) = \Delta(G_2) = \Delta$ and:
 - (2.1) both G_1 and G_2 are Class 1 [22];
 - (2.2) *G* is regular [22];
 - (2.3) both G_1 and G_2 are disjoint unions of cliques [22];
 - (2.4) $n_1 = n_2$ and each connected component of $G_1 \cup G_2$ has at most $\Delta + 1$ vertices [16];
 - (2.5) $n_1 = n_2$, each connected component of G_1 has at most $\Delta + 1$ vertices, G_2 is bipartite and either Δ is odd or G_2 has no $K_{\Delta,\Delta}$ as induced subgraph [16];
 - (2.6) $\Lambda[G_1]$ is edgeless [16];
 - (2.7) G_1 is a cograph (i.e. graph with no P_4 as an induced subgraph), $|V(\Lambda[G_1])| \leq n_2 |V(\Lambda[G_2])|$, and $\Lambda[G_1]$ is acyclic [16];
- (3) $\Delta(G_1) < \Delta(G_2)$ and $n_1 = n_2$ [22];
- (4) $\Delta(G_2) < n_2 n_1$ [17];
- (5) G_1 and G_2 are regular and $n_1 + n_2$ is even [23].

In edge-colouring, our interest lies mainly on connected graphs, since the chromatic index of a disconnected graph is the maximum among the chromatic indices of its connected components, and on graphs in which every vertex is a Δ -vertex (a vertex of degree Δ) or adjacent to a Δ -vertex, since the removal of a non- Δ -vertex non-adjacent to a Δ -vertex does not change the chromatic index of the graph [17]. An important subclass of join graphs is the class of the connected cographs. *Almost every* graph can be turned into a cograph with the addition of *a few* edges [6], and many NP-hard graph problems, including vertex-colouring, have linear-time solutions when restricted to cographs [4,5], but no polynomial-time algorithm is known for deciding the chromatic index of a cograph. Two remarkable subclasses of connected cographs in which every non-overfull graph is *Class* 1 are the class of the complete multipartite graphs [10] and the class of the connected quasi-thresholds graphs [21], which are a special case of graphs with a universal vertex [13].

This paper is organised as follows: in Section 2, we present further partial results on the chromatic index of join graphs, as well as a partial proof and a generalisation of a conjecture proposed in [16], about the case wherein the graph with minimum order involved in the join operation is a cograph with acyclic core; in Section 3, we restate Hilton and Chetwynd's Conjecture in terms of Algorithm 1 of [20] and prove that all triangle-free graphs with $\Delta \ge n/2$ are *Class* 1 by revisiting Vizing's recolouring procedure.

Please cite this article in press as: A. Zorzi, L.M. Zatesko, On the chromatic index of join graphs and triangle-free graphs with large maximum degree, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.10.022

Download English Version:

https://daneshyari.com/en/article/6871138

Download Persian Version:

https://daneshyari.com/article/6871138

Daneshyari.com