Planar graphs without chordal 6-cycles are 4-choosable

Dai-Qiang Hu ${ }^{\text {a }}$, Danjun Huang ${ }^{\text {b,* }}$, Weifan Wang ${ }^{\text {b }}$, Jian-Liang Wu^{c}
a Department of Mathematics, Jinan University, Guang Zhou 510632, China
${ }^{\text {b }}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{\text {c }}$ School of Mathematics, Shandong University, Jinan 250100, China

A R T I C L E INFO

Article history:

Received 31 May 2017
Received in revised form 21 December 2017
Accepted 7 March 2018
Available online xxxx

Keywords:

List coloring
Planar graph
Cycle
Chord

Abstract

A graph G is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. In this paper, we prove that every planar graph without chordal 6-cycles is 4 -choosable. This extends a known result that every planar graph without 6 -cycles is 4-choosable.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [2] for the terminologies and notation not defined here. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. For a vertex $v \in V(G)$, let $N(v)$ denote the set of vertices adjacent to v, and let $d(v)=|N(v)|$ denote the degree of v. A k-vertex, a k^{+}-vertex or a k^{-}-vertex is a vertex of degree k, at least k, or at most k, respectively. We use $\Delta(G)$ and $\delta(G)$ (or simply Δ and δ) to denote the maximum degree and the minimum degree of G, respectively. A k-cycle is a cycle of length k, and a 3-cycle is usually called a triangle. Two cycles are adjacent (or intersecting) if they share at least one edge (or vertex, respectively). Given a cycle C of length k in G, an edge $x y \in E(G) \backslash E(C)$ is called a chord of C if $x, y \in V(C)$. Such a cycle C is also called a chordal k-cycle.

A proper coloring of a graph G is a mapping ϕ from $V(G)$ to the color set $[k]=\{1,2, \ldots, k\}$ such that $\phi(x) \neq \phi(y)$ for every two adjacent vertices x and y of G. We say that L is an assignment for the graph G if it assigns a list $L(v)$ of possible colors to each vertex v of G. If G has a proper coloring ϕ such that $\phi(v) \in L(v)$ for all vertices v, then we say that G is L-colorable or ϕ is an L-coloring of G. The graph G is k-choosable if it is L-colorable for every assignment L satisfying $|L(v)| \geq k$ for any vertex v. The choice number or list chromatic number $\chi_{l}(G)$ of G is the smallest k such that G is k-choosable.

The concept of list coloring of a graph was introduced by Vizing [10] and Erdős, Rubin and Taylor [3], respectively. Thomassen [9] showed that every planar graph is 5-choosable. Examples of plane graphs which are not 4-choosable and plane graphs of girth 4 which are not 3-choosable were given by Voigt [11,12]. Since every planar graph without 3-cycles is 3-degenerate and hence is 4-choosable. Wang and Lih [15] showed that planar graphs without intersecting 3-cycles are 4 -choosable. Further, it was proved that every k-cycle-free planar graph is 4 -choosable for $k=4$ in [8], for $k=5$ in [7,14], for $k=6$ in [5,7,13], and for $k=7$ in [4]. In 2002, Wang and Lih [15] raised the following conjecture:

Conjecture 1. Every planar graph without adjacent 3-cycles is 4-choosable.

[^0]
ARTICLE IN PRESS

\mathcal{C}_{1}

\mathcal{C}_{2}

\mathcal{C}_{3}

\mathcal{C}_{4}

\mathcal{C}_{5}

Fig. 1. All possible clusters in G.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 2. The configurations in Lemma 4.

Equivalently, Conjecture 1 states that planar graphs without chordal 4-cycles are 4-choosable. So far Conjecture 1 has remained to be open. However, in this paper, we shall prove the following related result:

Theorem 1. Planar graphs without chordal 6-cycles are 4-choosable.
Clearly, Theorem 1 is an extension to the result in [5,7,13].

2. Proof

This section is devoted to show Theorem 1. Let G be a plane graph. For $f \in F(G)$, we use $b(f)$ to denote the boundary walk of f and write $f=\left[v_{1} v_{2} \cdots v_{n}\right]$ if $v_{1}, v_{2}, \ldots, v_{n}$ are the boundary vertices of f in a cyclic order. For a face $f \in F(G)$, let $d(f)$ denote the degree of f, i.e., the number of edges in $b(f)$. If a face is of degree k, at least k, or at most k, we call it a k-face, k^{+}-face, or k^{-}-face. Given a vertex $v \in V(G)$, let $T(v)$ denote the set of 3-faces incident with v, and let $t(v)=|T(v)|$. For a face $f \in F(G)$, let $m_{3}(f)$ denote the number of 3 -faces adjacent to f. A cluster \mathcal{C} is a connected subgraph of G consisting of a set of 3-faces such that any 3-face not in \mathcal{C} is not adjacent to any 3-face in \mathcal{C}. We say that a face f is adjacent to a cluster \mathcal{C} if f is adjacent to a 3-face in \mathcal{C}.

Suppose, to the contrary, that Theorem 1 is false. Let G be a counterexample to Theorem 1 with fewest vertices. Namely, G is a planar graph without chordal 6-cycles that is not 4-choosable, but $G-v$ is 4-choosable for any vertex $v \in V(G)$. Obviously, G is connected. Embed G into the plane.

We investigate the structural properties of G first. The following lemma holds trivially.
Lemma 2. $\delta(G) \geq 4$.
The literature [6] gives all possible clusters in G and describes certain small faces that can be adjacent to a given cluster.
Lemma 3 ([6]). There are only five possible clusters of 3-faces in G, depicted in Fig. 1.
In Fig. 1 (and also in Fig. 2), solid squares denote two copies of the same vertex, e.g., \mathcal{C}_{4} has only five distinct vertices. Moreover, let \mathcal{C}_{3}^{*} and \mathcal{C}_{5}^{*} denote, respectively, two special clusters \mathcal{C}_{3} and \mathcal{C}_{5} in Fig. 1 where $d\left(u_{1}\right)=d\left(u_{3}\right)=d\left(u_{5}\right)=4$.

Lemma 4 ([6]). G satisfies the following statements (1)-(9)
(1) \mathcal{C}_{2} is adjacent to at most one 4-face forcing an identification as shown in Fig. 2(a).
(2) If a 4-face is adjacent to two 3-faces, then they must be as shown in Fig. 2(b).
(3) Two adjacent 4-faces force an identification as in Fig. 2(c), and there is only one way for them to be adjacent to a 3-face as in Fig. 2(d).
(4) \mathcal{C}_{3} is adjacent to a 4-face in a unique way, as shown in Fig. 2(e).

https://daneshyari.com/en/article/6871147

Download Persian Version:
https://daneshyari.com/article/6871147

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: hdanjun@zjnu.cn (D. Huang).

