ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Eigenvalue location in cographs[☆]

David P. Jacobs^a, Vilmar Trevisan^{b,*}, Fernando Colman Tura^c

^a School of Computing, Clemson University Clemson, SC 29634, USA

^b Instituto de Matemática, UFRGS, 91509-900 Porto Alegre, RS, Brazil

^c Departamento de Matemática, UFSM, 97105–900 Santa Maria, RS, Brazil

ARTICLE INFO

Article history: Received 22 October 2015 Received in revised form 8 February 2017 Accepted 13 February 2017 Available online xxxx

Keywords: Cograph Adjacency matrix Eigenvalue

1. Introduction

ABSTRACT

We give an O(n) time and space algorithm for constructing a diagonal matrix congruent to A + xI, where A is the adjacency matrix of a cograph and $x \in \mathbb{R}$. Applications include determining the number of eigenvalues of a cograph's adjacency matrix that lie in any interval, obtaining a formula for the inertia of a cograph, and exhibiting infinitely many pairs of equienergetic cographs with integer energy.

© 2017 Elsevier B.V. All rights reserved.

Let G = (V, E) be an undirected graph with vertex set V and edge set E. For $v \in V$, N(v) denotes the open neighborhood of v, that is, $\{w|\{v, w\} \in E\}$. The closed neighborhood $N[v] = N(v) \cup \{v\}$. If |V| = n, the adjacency matrix $A = [a_{ij}]$ is the $n \times n$ matrix of zeros and ones such that $a_{ij} = 1$ if and only if v_i is adjacent to v_j (that is, there is an edge between v_i and v_j). A value λ is an eigenvalue if det $(A - \lambda I) = 0$, and since A is real symmetric its eigenvalues are real. In this paper, a graph's eigenvalues are the eigenvalues of its adjacency matrix.

This paper is concerned with *cographs*. The notion of a cograph under the name decomposable graphs was introduced by Kelmans in the 1960's [14,15] and this class of graphs has been discovered independently by several authors in many equivalent ways since then. Corneil, Lerchs and Burlingham [6] define cographs recursively:

(1) A graph on a single vertex is a cograph;

- (2) A finite union of cographs is a cograph;
- (3) The complement of a cograph is a cograph.

A graph is a cograph if and only if it has no induced path of length four [6]. They are often simply called P_4 free graphs in the literature. Linear time algorithms for recognizing cographs are given in [7] and more recently in [10].

While recognition algorithms for cographs are an interesting problem, our motivation for considering cographs comes from *spectral graph theory* [4,8]. Spectral properties of cographs were studied by Royle in [18] where the surprising result was obtained that the rank of a cograph is the number of non-zero rows in the adjacency matrix. An elementary proof of this property was later given in [5]. More recently, in [2] Biyikoğlu, Simić and Stanić obtained the multiplicity of -1 and 0 for cographs.

The purpose of this paper is to extend to cographs eigenvalue location algorithms that exist for trees [11], threshold graphs [12] and generalized lollipop graphs [9]. Recall that two real symmetric matrices *R* and *S* are *congruent* if there exists

 $^{
m trace}$ Work supported by Science without Borders CNPq – Grant 400122/2014-6, Brazil.

* Corresponding author.

http://dx.doi.org/10.1016/j.dam.2017.02.007 0166-218X/© 2017 Elsevier B.V. All rights reserved.

E-mail addresses: dpj@clemson.edu (D.P. Jacobs), trevisan@mat.ufrgs.br (V. Trevisan), ftura@smail.ufsm.br (F.C. Tura).

2

ARTICLE IN PRESS

D.P. Jacobs et al. / Discrete Applied Mathematics 🛚 (💵 💷 – 💵

a nonsingular matrix *P* for which $R = P^T SP$. Our main focus is an algorithm that uses O(n) time and space for constructing a diagonal matrix congruent to A + xI, where *A* is adjacency matrix of a cograph, and $x \in \mathbb{R}$. Our paper is similar in spirit to the papers [11,12] which describe O(n) diagonalization algorithms for trees and for threshold graphs. Threshold graphs are P_4 , C_4 , and $2K_2$ free, and therefore are a subclass of cographs. Hence our algorithm is an extension of the algorithm in [12].

Several points are worth noting. First, while one might expect linear time algorithms for graphs with *sparse* adjacency matrices such as trees, the adjacency matrix of a cograph can be *dense*. Next, while our algorithm's correctness is based on elementary matrix operations, its implementation operates directly on the cotree and uses only O(n) space. Finally, the *analysis* of algorithms for trees and threshold graphs has led to interesting theoretical results. For example, in [17] conditions were determined for the index (largest eigenvalue) in trees to be integer. In [12] the authors showed that all eigenvalues of threshold graphs, except -1 and 0, are simple. In [13] the algorithm was used to show that no threshold graphs have eigenvalues in (-1, 0).

If *G* is a graph having eigenvalues $\lambda_1, \ldots, \lambda_n$, its *energy*, denoted E(G) is defined to be $\sum_{i=1}^{n} |\lambda_i|$. Two non-cospectral graphs with the same energy are called *equienergetic*. Finding non-cospectral equienergetic graphs is a relevant problem. In [13] the authors presented infinite sequences of connected, equienergetic pairs of non-cospectral threshold graphs with integer energy. In this paper, we continue this investigation.

Here is an outline of the remainder of this paper. In Section 2 we describe cotrees, and present some known facts. In Section 3 we give the elementary matrix operations used in our algorithm. In Section 4 we give the complete diagonalization algorithm. In Section 5, using Sylvester's Law of Inertia, we show how to efficiently determine how many eigenvalues of a cograph lie in a given interval. The *inertia* of a graph *G* is the triple (n_+, n_0, n_-) giving the number of eigenvalues of *G* that are positive, zero, and negative, and in Section 6 we give a formula for cograph inertia. Finally in Section 7 we exhibit infinitely many non-threshold cographs equienergetic to a complete graph.

2. Cotrees and adjacency matrix

Cographs have been represented in various ways, and it is useful to recall the representation given in [6]. The unique *normalized form* of a cograph *G* is defined recursively: If *G* is connected, then it is in normalized form if it is expressed as a single vertex, or the *complemented union* of $k \ge 2$

$$G = \overline{G_1 \cup G_2 \cup \cdots \cup G_k}$$

connected cographs G_i in normalized form. If G is disconnected its normalized form is the complement of a connected cograph in normalized form. The unique rooted tree T_G representing the parse structure of the cograph's normalized form is called the *cotree*. The leaves or terminal vertices of T_G correspond to vertices in the cograph. The interior nodes represent $\overline{\cup}$ operations.

It is not difficult to show that the class of cographs is also the smallest class of graphs containing K_1 , and closed under the union \cup and join \otimes operators. In fact one can transform the cotree of Corneil, Lerchs and Burlingham into an equivalent tree T_G using \cup and \otimes . In the connected case, we simply place a \otimes at the tree's root, placing \cup on interior nodes with odd depth, and placing \otimes on interior nodes with even depth. To build a cotree for a disconnected cograph, we place \cup at the root, and place \otimes 's at odd depths, and \cup 's at even depths. It will be convenient for us to use this unique alternating representation. In [2] this structure is called a *minimal cotree*, but throughout this paper we call it simply a *cotree*. All interior nodes of cotrees have at least two children. Fig. 1 shows a cograph and cotree. The following is well known.

Lemma 1. If G is a cograph with cotree T_G , vertices u and v are adjacent in G if and only if their least common ancestor in T_G is \otimes .

Two vertices u and v are *duplicates* if N(u) = N(v) and *coduplicates* if N[u] = N[v]. We call u and v *siblings* if they are either duplicates or coduplicates. Siblings play an important role in the structure of cographs, as well as in this paper.

Lemma 2. Two vertices v and u in a cograph are siblings if and only if they share the same parent w node in the cotree. Moreover, if $w = \cup$, they are duplicates. If $w = \otimes$ they are coduplicates.

Lemma 3. A cograph G of order $n \ge 2$ has a pair of siblings.

Proof. The cotree of *G* must have an interior vertex adjacent to two leaves. \Box

Let *G* be a cograph with cotree T_G . Let G - v denote the subgraph obtained by removing *v*. It is known that G - v is a cograph, so we shall use T - v to denote the cotree of G - v. There is a general method for constructing T - v [6, Lem. 1]. However, it somewhat simplifies the process if *v* has maximum depth. The following lemma can be proved with Lemma 1.

Lemma 4. Let T_G be a cotree, and let $\{v, u\}$ be siblings of greatest depth, whose parent w has k children. If k > 2 we obtain T - v by removing v. If k = 2 and w is not the root, we obtain T - v by moving u to the parent of w, and removing v and w. If k = 2 and w is the root, the cotree is u.

We end this section by making an important observation.

Please cite this article in press as: D.P. Jacobs, et al., Eigenvalue location in cographs, Discrete Applied Mathematics (2017), http://dx.doi.org/10.1016/j.dam.2017.02.007

Download English Version:

https://daneshyari.com/en/article/6871152

Download Persian Version:

https://daneshyari.com/article/6871152

Daneshyari.com