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a b s t r a c t

We give an O(n) time and space algorithm for constructing a diagonal matrix congruent
to A + xI , where A is the adjacency matrix of a cograph and x ∈ R. Applications include
determining the number of eigenvalues of a cograph’s adjacency matrix that lie in any
interval, obtaining a formula for the inertia of a cograph, and exhibiting infinitely many
pairs of equienergetic cographs with integer energy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be an undirected graph with vertex set V and edge set E. For v ∈ V , N(v) denotes the open neighborhood
of v, that is, {w|{v, w} ∈ E}. The closed neighborhood N[v] = N(v) ∪ {v}. If |V | = n, the adjacency matrix A = [aij] is the
n× nmatrix of zeros and ones such that aij = 1 if and only if vi is adjacent to vj (that is, there is an edge between vi and vj).
A value λ is an eigenvalue if det(A − λI) = 0, and since A is real symmetric its eigenvalues are real. In this paper, a graph’s
eigenvalues are the eigenvalues of its adjacency matrix.

This paper is concerned with cographs. The notion of a cograph under the name decomposable graphs was introduced
by Kelmans in the 1960’s [14,15] and this class of graphs has been discovered independently by several authors in many
equivalent ways since then. Corneil, Lerchs and Burlingham [6] define cographs recursively:

(1) A graph on a single vertex is a cograph;
(2) A finite union of cographs is a cograph;
(3) The complement of a cograph is a cograph.

A graph is a cograph if and only if it has no induced path of length four [6]. They are often simply called P4 free graphs in the
literature. Linear time algorithms for recognizing cographs are given in [7] and more recently in [10].

While recognition algorithms for cographs are an interesting problem, our motivation for considering cographs comes
from spectral graph theory [4,8]. Spectral properties of cographswere studied by Royle in [18]where the surprising resultwas
obtained that the rank of a cograph is the number of non-zero rows in the adjacencymatrix. An elementary proof of this prop-
ertywas later given in [5].More recently, in [2] Bıyıkoğlu, Simić and Stanić obtained themultiplicity of−1 and 0 for cographs.

The purpose of this paper is to extend to cographs eigenvalue location algorithms that exist for trees [11], threshold
graphs [12] and generalized lollipop graphs [9]. Recall that two real symmetric matrices R and S are congruent if there exists
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a nonsingular matrix P for which R = PT SP . Our main focus is an algorithm that uses O(n) time and space for constructing
a diagonal matrix congruent to A+ xI , where A is adjacency matrix of a cograph, and x ∈ R. Our paper is similar in spirit to
the papers [11,12] which describe O(n) diagonalization algorithms for trees and for threshold graphs. Threshold graphs are
P4, C4, and 2K2 free, and therefore are a subclass of cographs. Hence our algorithm is an extension of the algorithm in [12].

Several points are worth noting. First, while one might expect linear time algorithms for graphs with sparse adjacency
matrices such as trees, the adjacency matrix of a cograph can be dense. Next, while our algorithm’s correctness is based
on elementary matrix operations, its implementation operates directly on the cotree and uses only O(n) space. Finally, the
analysis of algorithms for trees and threshold graphs has led to interesting theoretical results. For example, in [17] conditions
were determined for the index (largest eigenvalue) in trees to be integer. In [12] the authors showed that all eigenvalues
of threshold graphs, except −1 and 0, are simple. In [13] the algorithm was used to show that no threshold graphs have
eigenvalues in (−1, 0).

If G is a graph having eigenvalues λ1, . . . , λn, its energy, denoted E(G) is defined to be
n

i=1 |λi|. Two non-cospectral
graphs with the same energy are called equienergetic. Finding non-cospectral equienergetic graphs is a relevant problem.
In [13] the authors presented infinite sequences of connected, equienergetic pairs of non-cospectral threshold graphs with
integer energy. In this paper, we continue this investigation.

Here is an outline of the remainder of this paper. In Section 2 we describe cotrees, and present some known facts. In
Section 3we give the elementarymatrix operations used in our algorithm. In Section 4we give the complete diagonalization
algorithm. In Section 5, using Sylvester’s Law of Inertia, we show how to efficiently determine how many eigenvalues of a
cograph lie in a given interval. The inertia of a graph G is the triple (n+, n0, n−) giving the number of eigenvalues of G that are
positive, zero, and negative, and in Section 6 we give a formula for cograph inertia. Finally in Section 7 we exhibit infinitely
many non-threshold cographs equienergetic to a complete graph.

2. Cotrees and adjacency matrix

Cographs have been represented in various ways, and it is useful to recall the representation given in [6]. The unique
normalized form of a cograph G is defined recursively: If G is connected, then it is in normalized form if it is expressed as a
single vertex, or the complemented union of k ≥ 2

G = G1 ∪ G2 ∪ · · · ∪ Gk

connected cographs Gi in normalized form. If G is disconnected its normalized form is the complement of a connected
cograph in normalized form. The unique rooted tree TG representing the parse structure of the cograph’s normalized form
is called the cotree. The leaves or terminal vertices of TG correspond to vertices in the cograph. The interior nodes represent
∪ operations.

It is not difficult to show that the class of cographs is also the smallest class of graphs containing K1, and closed under the
union∪ and join⊗ operators. In fact one can transform the cotree of Corneil, Lerchs and Burlingham into an equivalent tree
TG using ∪ and⊗. In the connected case, we simply place a⊗ at the tree’s root, placing ∪ on interior nodes with odd depth,
and placing⊗ on interior nodes with even depth. To build a cotree for a disconnected cograph, we place ∪ at the root, and
place ⊗’s at odd depths, and ∪’s at even depths. It will be convenient for us to use this unique alternating representation.
In [2] this structure is called aminimal cotree, but throughout this paperwe call it simply a cotree. All interior nodes of cotrees
have at least two children. Fig. 1 shows a cograph and cotree. The following is well known.

Lemma 1. If G is a cograph with cotree TG, vertices u and v are adjacent in G if and only if their least common ancestor in TG
is⊗.

Two vertices u and v are duplicates if N(u) = N(v) and coduplicates if N[u] = N[v]. We call u and v siblings if they are
either duplicates or coduplicates. Siblings play an important role in the structure of cographs, as well as in this paper.

Lemma 2. Two vertices v and u in a cograph are siblings if and only if they share the same parent w node in the cotree. Moreover,
if w = ∪, they are duplicates. If w = ⊗ they are coduplicates.

Lemma 3. A cograph G of order n ≥ 2 has a pair of siblings.

Proof. The cotree of Gmust have an interior vertex adjacent to two leaves. �

Let G be a cograph with cotree TG. Let G − v denote the subgraph obtained by removing v. It is known that G − v is a
cograph, so we shall use T − v to denote the cotree of G − v. There is a general method for constructing T − v [6, Lem. 1].
However, it somewhat simplifies the process if v has maximum depth. The following lemma can be proved with Lemma 1.

Lemma 4. Let TG be a cotree, and let {v, u} be siblings of greatest depth, whose parent w has k children. If k > 2we obtain T−v
by removing v. If k = 2 and w is not the root, we obtain T − v by moving u to the parent of w, and removing v and w. If k = 2
and w is the root, the cotree is u.

We end this section by making an important observation.
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