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a b s t r a c t

We investigate the ratio ρn,L of prefix codes to all uniquely decodable codes over an n-letter
alphabet and with length distribution L. For any integers n ≥ 2 and m ≥ 1, we construct
a lower bound and an upper bound for infLρn,L, the infimum taken over all sequences L of
length m for which the set of uniquely decodable codes with length distribution L is non-
empty. As a result, we obtain that this infimum is always greater than zero. Moreover, for
every m ≥ 1 it tends to 1 when n → ∞, and for every n ≥ 2 it tends to 0 when m → ∞.
In the casem = 2, we also obtain the exact value for this infimum.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and the results

In this paper, we study variable-length codes with a given length distribution L = (a1, . . . , am) (ai ≥ 0), that is finite
sequences (v1, . . . , vm) of words vi ∈ X∗ (so-called code words) over a given finite alphabet X such that for every 1 ≤ i ≤ m
the length |vi| of the word vi is equal to ai. An important and the most-studied class of variable-length codes are prefix
codes. Therefore, given a particular class of codes, it is natural to ask about the contribution of prefix codes in this class.
This contribution may be though of as the ratio to all codes in this class. Recall that a prefix code is an injective sequence
(v1, . . . , vm) of non-empty code words vi such that no code word is a prefix (initial segment) of another code word. It
is known that every prefix code (v1, . . . , vm) is uniquely decodable, which means that the following condition holds: if
vi1vi2 . . . vit = vj1vj2 . . . vjt′ for some t, t ′ ≥ 1, 1 ≤ is, js′ ≤ m, 1 ≤ s ≤ t , 1 ≤ s′ ≤ t ′, then t = t ′ and is = js for
every 1 ≤ s ≤ t . Obviously, not every uniquely decodable code is a prefix code. For example, the code (0, 01) over the binary
alphabet is uniquely decodable, but it is not a prefix code. Also, not every injective code is uniquely decodable (as an example
may serve the injective code (v1, v2, v3) with the code words v1 = 0, v2 = 01, v3 = 10, which satisfy v2v1 = v1v3).

Given an integer n ≥ 2 and a finite sequence L = (a1, . . . , am) of positive integers, letUDn(L) denote the set of all uniquely
decodable codes over an n-letter alphabet and with length distribution L, and let PRn(L) ⊆ UDn(L) denote the subset of
prefix codes. According to the Kraft–McMillan theorem [6], we have: UDn(L) ̸= ∅ if and only if PRn(L) ̸= ∅ if and only if∑m

i=1n
−ai ≤ 1. Thus, for every n ≥ 2 andm ≥ 1 the set

Ln,m := {L : |L| = m, UDn(L) ̸= ∅} = {L : |L| = m, PRn(L) ̸= ∅}

is infinite. If we also denote

Ln := {L : UDn(L) ̸= ∅} = {L : PRn(L) ̸= ∅},

then we have Ln =
⋃

m≥1Ln,m. In particular, the sets Ln (n ≥ 2) form an increasing sequence: L2 ⊆ L3 ⊆ . . ..
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In the present paper, we study the asymptotic behaviour of the quotients

ρn,L :=
|PRn(L)|
|UDn(L)|

, n ≥ 2, L ∈ Ln.

Since every prefix code is uniquely decodable, we have 0 ≤ ρn,L ≤ 1. In [8], we have shown that ρn,L = 1 if and only if L is
constant. We derived that result from the following estimation:

Theorem 1 ([8], Theorem 1). If L ∈ Ln is non-constant, then
|UDn(L)|
|PRn(L)|

≥ 1 +
ra · rb

|PRn((a, b))|
= 1 +

ra · rb
na+b − nmax{a,b} ,

where a and b are arbitrary two different values of L and ra (resp. rb) is the number of those elements in L which are equal to a
(resp. to b).

For every n ≥ 2 andm ≥ 1, let us define the infimum

ξn,m := inf
L∈Ln,m

|PRn(L)|
|UDn(L)|

= inf
L∈Ln,m

ρn,L.

In particular ξn,1 = 1 and 0 ≤ ξn,m < 1 for all n,m ≥ 2. Since the set Ln,m is infinite, one may ask if there exist n ≥ 2,
m ≥ 1 such that ξn,m = 0. For the first result of the present paper, we construct in Section 2 a positive lower bound for the
quotients ρn,L, which negatively answers this question. Namely, if we define

ςn,m :=
n − (m)n−1

n
⌊

m
n−1

⌋
+1

, (1)

where (m)n−1 is the remainder from the division ofm by n − 1, then we obtain the following result:

Theorem 2. Let n ≥ 2, m ≥ 1 and L ∈ Ln,m. Then the quotient ρn,L = |PRn(L)|/|UDn(L)| is not smaller than qn,m · ςm−1
n,m , where

qn,m :=

⎧⎨⎩1, n ≥ m,
(m − 1)!

(m − 1)m−1 , n < m.

Moreover, if the sequence L is injective (i.e. all values in L are distinct), then ρn,L is not smaller than the product

ϖn,m :=

(
1 −

1 − n−1

n − 1

)(
1 −

1 − n−2

n − 1

)
. . .

(
1 −

1 − n−m+1

n − 1

)
. (2)

As a direct consequence of the above theorem, we obtain:

Corollary 1. For all n ≥ 2 and m ≥ 1 the infimum ξn,m = infL∈Ln,mρn,L is not smaller than qn,m · ςm−1
n,m . Moreover, for every

m ≥ 1, we have limn→∞ξn,m = 1.

To derive Theorem 2, we consider the set In(L) of all injective codes over an n-letter alphabet and with length distribution
L. Since UDn(L) ⊆ In(L), the following inequality holds: ρn,L ≥ |PRn(L)|/|In(L)|. For the required bound, we apply the general
formulae for the cardinalities of the sets PRn(L) and In(L) to estimate the quotient on the right-hand side of the above
inequality. As for the formula for |PRn(L)|, we derived it in [8] by using a well-known combinatorial construction (a so-called
Kraft’s construction) of an arbitrary prefix code from PRn(L). Namely, if L̃ = (ν1, . . . , νt ) is the sequence of the values of L
ordered from the smallest to the largest (i.e. ν1 < ν2 < · · · < νt ) and if ri (1 ≤ i ≤ t) is the number of those elements in L
which are equal to νi, then we obtained (see Section 2 in [8]):

|PRn(L)| =

t∏
i=1

(
Ni

ri

)
ri!, (3)

where N1 := nν1 and Ni+1 := nνi+1−νi (Ni − ri) for 1 ≤ i < t .
For the second result of the present paper, we consider the numbers ηn,m (n ≥ 2,m ≥ 1) defined as follows:

ηn,m := 1 +

m−1∑
i=1

(
m − 1

i

)
1

ni − 1
.

In particular, the following obvious inequality holds:

ηn,m ≥ 1 +

m−1∑
i=1

(
m − 1

i

)
1
ni =

(
1 +

1
n

)m−1

.

In Section 3, we use these numbers to find the following upper bound for the infimum ξn,m.
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