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a b s t r a c t

The Grundy number of a graph is the maximum number of colors used by the greedy
coloring algorithm over all vertex orderings. In this paper, we study the computational
complexity of Grundy Coloring, the problem of determining whether a given graph has
Grundy number at least k. We also study the variants Weak Grundy Coloring (where the
coloring is not necessarily proper) and Connected Grundy Coloring (where at each step
of the greedy coloring algorithm, the subgraph induced by the colored vertices must be
connected).

We show that Grundy Coloring can be solved in time O∗(2.443n) and Weak Grundy
Coloring in time O∗(2.716n) on graphs of order n. While Grundy Coloring and Weak
Grundy Coloring are known to be solvable in time O∗(2O(wk)) for graphs of treewidth w
(where k is the number of colors), we prove that under the Exponential Time Hypothesis
(ETH), they cannot be solved in time O∗(2o(w logw)). We also describe an O∗(22O(k) ) algorithm
for Weak Grundy Coloring, which is therefore FPT for the parameter k. Moreover, under
the ETH, we prove that such a running time is essentially optimal (this lower bound also
holds for Grundy Coloring). Although we do not know whether Grundy Coloring is in
FPT, we show that this is the case for graphs belonging to a number of standard graph
classes including chordal graphs, claw-free graphs, and graphs excluding a fixedminor.We
also describe a quasi-polynomial time algorithm for Grundy Coloring andWeak Grundy
Coloring on apex-minor graphs. In stark contrast with the two other problems, we show
that Connected Grundy Coloring is NP-complete already for k = 7 colors.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A k-coloring of a graph G is a surjective mapping ϕ : V (G) → {1, . . . , k} (we say that vertex v is colored with ϕ(v)).
A k-coloring ϕ is proper if any two adjacent vertices receive different colors in ϕ. The chromatic number χ (G) of G is the
smallest k such that G has a proper k-coloring. Determining the chromatic number of a graph is one of themost fundamental
problems in graph theory. Given a graph G and an ordering σ = v1, . . . , vn of V (G), the first-fit coloring algorithm colors
the vertices from v1 to vn in the order imposed by σ , and the vertex vi is colored with the smallest positive integer that is
not present among the colors of the neighbors of vi which are in {v1, . . . , vi−1} (in other words, the neighbors of vi which
are already colored). The Grundy number Γ (G) is the largest k such that G admits a first-fit coloring (for some ordering)
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using k colors. First-fit is presumably the simplest heuristic to compute a proper coloring of a graph. In this sense, the
Grundy number gives an algorithmic upper bound on the performance of any heuristic for the chromatic number. This
notion was first studied by Grundy in 1939 in the context of digraphs and games [4,18], and formally introduced 40 years
later by Christen and Selkow [9]. It was independently defined under the name ochromatic number by Simmons [36] (the
two concepts were proved to be equivalent in [14]). Many works have studied the first-fit algorithm in connection with
on-line coloring algorithms, see for example [32]. A natural relaxation of this concept is theweak Grundy number, introduced
by Kierstead and Saoub [26], where the obtained coloring is not asked to be proper. A more restricted concept is the one of
connected Grundy number, introduced by Benevides et al. [3], where the algorithm is given an additional ‘‘local’’ restriction
on the feasible vertex orderings that can be considered: at each step of the first-fit algorithm, the subgraph induced by the
colored vertices must be connected.

The goal of this paper is to advance the study of the computational complexity of determining the Grundy number, the
weak Grundy number and the connected Grundy number of a graph.

Let us introduce the problems formally. Let G be a graph and let σ = v1, . . . , vn be an ordering of V (G). A k-coloring
ϕ : V (G) → {1, . . . , k} of G is a first-fit coloring with respect to σ if for every vertex vi, the two following conditions hold:
(1) for every color (i.e., positive integer) c with c < ϕ(vi), there is a j < i such that vi and vj are adjacent and ϕ(vj) = c ,
and (2) there is no j < i such that vi and vj are adjacent and ϕ(vi) = ϕ(vj). A k-coloring is a Grundy coloring if it is a first-fit
coloring with respect to some vertex ordering σ . A k-coloring is a weak Grundy coloring if it satisfies the condition (1) with
respect to some vertex ordering σ . A vertex ordering σ = v1, . . . , vn is connected if for every i, 1 ⩽ i ⩽ n, the subgraph
induced by {v1, . . . , vi} is connected. A k-coloring is a connected Grundy coloring if it is a Grundy coloring with respect to a
connected vertex ordering. We note that a (connected) Grundy coloring is a proper coloring, and a weak Grundy coloring is
not necessarily proper. Observe that a (connected) Grundy coloring is uniquely defined by its ordering σ , while it is not the
case for the weak Grundy coloring.

The maximum number of colors used, taken among all (weak, connected, respectively) Grundy colorings, is called the
(weak, connected, respectively) Grundy number and is denoted Γ (G) (Γ ′(G) and Γc(G), respectively). In this paper, we study
the complexity of computing these invariants.

Grundy Coloring
Input: A graph G, an integer k.
Question: Do we have Γ (G) ⩾ k?

Weak Grundy Coloring
Input: A graph G, an integer k.
Question: Do we have Γ ′(G) ⩾ k?

Connected Grundy Coloring
Input: A graph G, an integer k.
Question: Do we have Γc(G) ⩾ k?

Note that χ (G) ⩽ Γ (G) ⩽ ∆(G)+1, where χ (G) is the chromatic number and∆(G) is themaximumdegree of G. However,
the difference Γ (G) − χ (G) can be (arbitrarily) large, even for bipartite graphs. For example, the Grundy number of the tree
of Fig. 1 is 4, whereas its chromatic number is 2. Note that this is not the case for Γc for bipartite graphs, since Γc(G) ⩽ 2 for
any bipartite graph G [3]. However, the difference Γc(G) − χ (G) can be (arbitrarily) large even for planar graphs [3].

Previous results. Grundy Coloring remains NP-complete on bipartite graphs [22] and their complements [38] (and hence
claw-free graphs and P5-free graphs), on chordal graphs [35], andon line graphs [21]. Certain graph classes admit polynomial-
time algorithms. There is a linear-time algorithm for Grundy Coloring on trees [23]. This result was extended to graphs
of bounded treewidth by Telle and Proskurowski [37], who proposed a dynamic programming algorithm running in time
kO(w)2O(wk)n = O(n3w2

) for graphs of treewidth w (in other words, their algorithm is in FPT for parameter k + w and in XP
for parameterw).2 A polynomial-time algorithm for Grundy Coloring on P4-laden graphs, which contains all cographs as a
subfamily, was given in [2].

Note that Grundy Coloring admits a polynomial-time algorithm when the number k of colors is fixed [39], in other
words, it is in XP for parameter k.

Grundy Coloring has polynomial-time constant-factor approximation algorithms for inputs that are interval graphs
[20,32], complements of chordal graphs [20], complements of bipartite graphs [20] and bounded tolerance graphs [26].

2 The first running time is not explicitly stated in [37] but follows from their meta-theorem. The second one is deduced by the authors of [37] from the
first one by upper-bounding k by wlog2n + 1.
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