On the chromatic numbers of small-dimensional Euclidean spaces

Danila Cherkashin ${ }^{\text {a,b,c }}$, Anatoly Kulikov ${ }^{\text {d,e }}$, Andrei Raigorodskii ${ }^{\text {f,g,h,* }}$
${ }^{\text {a }}$ Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O., 29B, Saint Petersburg 199178, Russia
${ }^{\mathrm{b}}$ Moscow Institute of Physics and Technology Laboratory of Advanced Combinatorics and Network Applications, Institutsky per. 9. Dolgoprudny, 141700, Russia
${ }^{\text {c }}$ St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, Russia
${ }^{\text {d }}$ St. Petersburg State University, Faculty of Physics, 13B Universitetskaya Emb., St. Petersburg 199034, Russia
e School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
${ }^{\mathrm{f}}$ Moscow Institute of Physics and Technology, Faculty of Innovations and High Technology, Department of Discrete Mathematics and Laboratory of Advanced Combinatorics and Network Applications, Russia
${ }^{\mathrm{g}}$ Moscow State University, Mechanics and Mathematics Faculty, Department of Mathematical Statistics and Random Processes, Russia
${ }^{\mathrm{h}}$ Buryat State University, Institute of Mathematics and Informatics, Russia

ARTICLE INFO

Article history:

Received 18 March 2017
Received in revised form 26 January 2018
Accepted 19 February 2018
Available online xxxx

Keywords:

Distance graphs
Chromatic number
Independence number

Abstract

This paper is devoted to the study of the graph sequence $G_{n}=\left(V_{n}, E_{n}\right)$, where V_{n} is the set of all vectors $v \in \mathbb{R}^{n}$ with coordinates in $\{-1,0,1\}$ such that $|v|=\sqrt{3}$ and E_{n} consists of all pairs of vertices with scalar product 1 . We find the exact value of the independence number of G_{n}. As a corollary we get new lower bounds on $\chi\left(\mathbb{R}^{n}\right)$ and $\chi\left(\mathbb{Q}^{n}\right)$ for small values of n.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{R}^{n} be the standard Euclidean space, where the distance between any two points x, y is denoted by $|x-y|$. Let V be an arbitrary point set in \mathbb{R}^{n}. Let $a>0$ be a real number. By a distance graph with set of vertices V, we mean the graph $G=(V, E)$ whose set of edges E contains all pairs of points from V that are at the distance a apart:

$$
E=\{\{x, y\}:|x-y|=a\} .
$$

Distance graphs are among the most studied objects of combinatorial geometry. First of all, they are at the ground of the classical Hadwiger-Nelson problem, which was proposed around 1950 (see [12,27]) and consists in determining the chromatic number of the space:

$$
\chi\left(\mathbb{R}^{n}\right)=\min \left\{\chi: \mathbb{R}^{n}=V_{1} \sqcup \cdots \sqcup V_{\chi}, \forall i \forall \mathbf{x}, \mathbf{y} \in V_{i}|\mathbf{x}-\mathbf{y}| \neq 1\right\}
$$

i.e., the minimum number of colors needed to color all the points in \mathbb{R}^{n} so that any two points at the distance 1 receive different colors. In other words, it is the chromatic number of the unit distance graph whose vertex set coincides with \mathbb{R}^{n}.

[^0]Due to the extreme popularity of the subject, colorings of unit distance graphs are very deeply explored. Let us just refer the reader to several books and survey articles [21,2,5,14,23,25,24,26,28]. In particular, the best known lower bounds for the chromatic numbers in dimensions $\leqslant 12$ are given below $[23,20,8,4,6,18,16,17,15]$:

$$
\begin{aligned}
& \chi\left(\mathbb{R}^{2}\right) \geqslant 4[23], \chi\left(\mathbb{R}^{3}\right) \geqslant 6[20], \chi\left(\mathbb{R}^{4}\right) \geqslant 9[8], \chi\left(\mathbb{R}^{5}\right) \geqslant 9[4], \chi\left(\mathbb{R}^{6}\right) \geqslant 11[6], \chi\left(\mathbb{R}^{7}\right) \geqslant 15[23], \\
& \chi\left(\mathbb{R}^{8}\right) \geqslant 16[18], \chi\left(\mathbb{R}^{9}\right) \geqslant 21[16], \chi\left(\mathbb{R}^{10}\right) \geqslant 23[16], \chi\left(\mathbb{R}^{11}\right) \geqslant 25[17], \chi\left(\mathbb{R}^{12}\right) \geqslant 27[15] .
\end{aligned}
$$

Recently further improvements were announced [7,13]:

$$
\chi\left(\mathbb{R}^{6}\right) \geqslant 12[7], \chi\left(\mathbb{R}^{7}\right) \geqslant 16[7], \chi\left(\mathbb{R}^{8}\right) \geqslant 19[13], \chi\left(\mathbb{R}^{10}\right) \geqslant 26[7],[13], \chi\left(\mathbb{R}^{11}\right) \geqslant 32[13], \chi\left(\mathbb{R}^{12}\right) \geqslant 36[7]
$$

These improvements are essentially based on computer calculations.
In growing dimensions, the following bounds are the best known [22,18]:

$$
[22](1.239 \ldots+o(1))^{n} \leqslant \chi\left(\mathbb{R}^{n}\right) \leqslant(3+o(1))^{n}[18]
$$

In this paper, we consider a special sequence of graphs defined in the following way.
Let V_{n} be the set of all vectors v from \mathbb{R}^{n} with coordinates in $\{-1,0,1\}$ and $|v|=\sqrt{3}$. The set V_{n} can be considered as the set of vertices of a graph $G_{n}=\left(V_{n}, E_{n}\right)$, where an edge connects two vertices if and only if the corresponding vectors have scalar product 1 . Note that G_{1} and G_{2} are empty and G_{3} is just a cube.

Recall that an independent set in a graph is any set of its vertices which are pairwise non-adjacent and the independence number of G denoted by $\alpha(G)$ is the size of a maximum independent set in the graph G.

Theorem 1. For $n \geqslant 1$, let $c(n)$ denote the following constant:

$$
c(n)=\left\{\begin{array}{ll}
0 & \text { if } n \equiv 0 \\
1 & \text { if } n \equiv 1 \\
2 & \text { if } n \equiv 2 \text { or } 3
\end{array} \quad(\bmod 4)\right.
$$

Then, the independence number of G_{n} is given by the formula

$$
\alpha\left(G_{n}\right)=\max \{6 n-28,4 n-4 c(n)\}
$$

Actually, the result of Theorem 1 is a far-reaching generalization of a much simpler lemma proved by Zs. Nagy (see [19]) in 1972 and used not only in combinatorial geometry, but also in Ramsey theory. In this lemma, $G_{n}^{\prime}=\left(V_{n}^{\prime}, E_{n}^{\prime}\right)$, where V_{n}^{\prime} is the set of all vectors $v,|v|=\sqrt{3}$, with coordinates in $\{0,1\}$ and again an edge connects two vertices if and only if the corresponding vectors have scalar product 1 . Lemma states that in this case $\alpha\left(G_{n}^{\prime}\right)=n-c(n)$.

Larman and Rogers used the mentioned lemma to prove $\chi\left(\mathbb{R}^{n}\right) \geqslant(1+o(1)) n^{2} / 6$ (in fact, it was suggested by Erdős and Sós), which was the first nontrivial lower bound on $\chi\left(\mathbb{R}^{n}\right)$. It is worth noting that the chromatic number of G_{n}^{\prime} almost coincides with the bound $n / \alpha\left(G_{n}^{\prime}\right)$, as was shown in [1].

On the other hand there is a natural bijection between $\{0,1\}^{n}$ and the subsets of n-element set, which gives deep combinatorial sense to graphs of the mentioned types. In several recent papers [9,11,10] Frankl and Kupavskii consider analogues of some classical combinatorial problems in $\{0, \pm 1\}$ setup.

The proof of Theorem 1 is given in the following parts: some examples showing the lower bound in Theorem 1 and some preliminaries are given in Section 2; the upper bound is proved in Section 3 (for the case $n \leqslant 13$ we use computer simulations). Note that, roughly speaking, the quantity 13 is a threshold where the bound $6 n-28$ starts dominating the bound $4 n$.

As a corollary of Theorem 1 we get the following bounds for the chromatic numbers of Euclidean spaces.
Theorem 2. Let $c(n)$ be the constant defined in Theorem 1. Then, for all $n \geqslant 3$, we have

$$
\chi\left(\mathbb{R}^{n}\right) \geqslant \chi\left(\mathbb{Q}^{n}\right) \geqslant \chi\left(G_{n}\right) \geqslant \frac{\left|V_{n}\right|}{\alpha\left(G_{n}\right)}=\frac{8\binom{n}{3}}{\max \{6 n-28,4 n-c(n)\}}
$$

Asymptotically, the bound in this theorem is $\frac{2}{9} n^{2}(1+o(1))$, which is a weak result. On the other hand, for small values of n, the theorem gives the best known bounds, namely:

$$
\begin{aligned}
& \chi\left(\mathbb{R}^{9}\right) \geqslant \chi\left(\mathbb{Q}^{9}\right) \geqslant 21, \\
& \chi\left(\mathbb{R}^{10}\right) \geqslant \chi\left(\mathbb{Q}^{10}\right) \geqslant 30, \\
& \chi\left(\mathbb{R}^{11}\right) \geqslant \chi\left(\mathbb{Q}^{11}\right) \geqslant 35 \\
& \chi\left(\mathbb{R}^{12}\right) \geqslant \chi\left(\mathbb{Q}^{12}\right) \geqslant 37 .
\end{aligned}
$$

Actually, we will show in Section 4 the following stronger result for $n=9$.

Download Persian Version:
https://daneshyari.com/article/6871192

Daneshyari.com

[^0]: * Corresponding author at: Moscow Institute of Physics and Technology, Faculty of Innovations and High Technology, Department of Discrete Mathematics and Laboratory of Advanced Combinatorics and Network Applications, Russia.

 E-mail address: mraigor@yandex.ru (A. Raigorodskii).

