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a b s t r a c t

This paper is devoted to the study of the graph sequence Gn = (Vn, En), where Vn is the
set of all vectors v ∈ Rn with coordinates in {−1, 0, 1} such that |v| =

√
3 and En consists

of all pairs of vertices with scalar product 1. We find the exact value of the independence
number of Gn. As a corollary we get new lower bounds on χ (Rn) and χ (Qn) for small values
of n.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let Rn be the standard Euclidean space, where the distance between any two points x, y is denoted by |x− y|. Let V be an
arbitrary point set inRn. Let a > 0 be a real number. By a distance graphwith set of vertices V , wemean the graph G = (V , E)
whose set of edges E contains all pairs of points from V that are at the distance a apart:

E = {{x, y} : |x − y| = a}.

Distance graphs are among the most studied objects of combinatorial geometry. First of all, they are at the ground of
the classical Hadwiger–Nelson problem, which was proposed around 1950 (see [12,27]) and consists in determining the
chromatic number of the space:

χ (Rn) = min
{
χ : Rn

= V1 ⊔ · · · ⊔ Vχ , ∀ i ∀ x, y ∈ Vi |x − y| ̸= 1
}
,

i.e., the minimum number of colors needed to color all the points in Rn so that any two points at the distance 1 receive
different colors. In other words, it is the chromatic number of the unit distance graph whose vertex set coincides with Rn.
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Due to the extreme popularity of the subject, colorings of unit distance graphs are very deeply explored. Let us just refer
the reader to several books and survey articles [21,2,5,14,23,25,24,26,28]. In particular, the best known lower bounds for the
chromatic numbers in dimensions ⩽ 12 are given below [23,20,8,4,6,18,16,17,15]:

χ (R2) ⩾ 4 [23], χ (R3) ⩾ 6 [20], χ (R4) ⩾ 9 [8], χ (R5) ⩾ 9 [4], χ (R6) ⩾ 11 [6], χ (R7) ⩾ 15 [23],

χ (R8) ⩾ 16 [18], χ (R9) ⩾ 21 [16], χ (R10) ⩾ 23 [16], χ (R11) ⩾ 25 [17], χ (R12) ⩾ 27 [15].

Recently further improvements were announced [7,13]:

χ (R6) ⩾ 12 [7], χ (R7) ⩾ 16 [7], χ (R8) ⩾ 19 [13], χ (R10) ⩾ 26 [7], [13], χ (R11) ⩾ 32 [13], χ (R12) ⩾ 36 [7].

These improvements are essentially based on computer calculations.
In growing dimensions, the following bounds are the best known [22,18]:

[22] (1.239 . . . + o(1))n ⩽ χ (Rn) ⩽ (3 + o(1))n [18].

In this paper, we consider a special sequence of graphs defined in the following way.
Let Vn be the set of all vectors v from Rn with coordinates in {−1, 0, 1} and |v| =

√
3. The set Vn can be considered as the

set of vertices of a graph Gn = (Vn, En), where an edge connects two vertices if and only if the corresponding vectors have
scalar product 1. Note that G1 and G2 are empty and G3 is just a cube.

Recall that an independent set in a graph is any set of its vertices which are pairwise non-adjacent and the independence
number of G denoted by α(G) is the size of a maximum independent set in the graph G.

Theorem 1. For n ⩾ 1, let c(n) denote the following constant:

c(n) =

{0 if n ≡ 0
1 if n ≡ 1
2 if n ≡ 2 or 3

(mod 4).

Then, the independence number of Gn is given by the formula

α(Gn) = max{6n − 28, 4n − 4c(n)}.

Actually, the result of Theorem 1 is a far-reaching generalization of a much simpler lemma proved by Zs. Nagy (see [19])
in 1972 and used not only in combinatorial geometry, but also in Ramsey theory. In this lemma, G′

n = (V ′
n, E

′
n), where V ′

n
is the set of all vectors v, |v| =

√
3, with coordinates in {0, 1} and again an edge connects two vertices if and only if the

corresponding vectors have scalar product 1. Lemma states that in this case α(G′
n) = n − c(n).

Larman and Rogers used the mentioned lemma to prove χ (Rn) ⩾ (1 + o(1))n2/6 (in fact, it was suggested by Erdős
and Sós), which was the first nontrivial lower bound on χ (Rn). It is worth noting that the chromatic number of G′

n almost
coincides with the bound n/α(G′

n), as was shown in [1].
On the other hand there is a natural bijection between {0, 1}n and the subsets of n-element set, which gives deep

combinatorial sense to graphs of the mentioned types. In several recent papers [9,11,10] Frankl and Kupavskii consider
analogues of some classical combinatorial problems in {0, ±1} setup.

The proof of Theorem 1 is given in the following parts: some examples showing the lower bound in Theorem 1 and
some preliminaries are given in Section 2; the upper bound is proved in Section 3 (for the case n ⩽ 13 we use computer
simulations). Note that, roughly speaking, the quantity 13 is a threshold where the bound 6n − 28 starts dominating the
bound 4n.

As a corollary of Theorem 1 we get the following bounds for the chromatic numbers of Euclidean spaces.

Theorem 2. Let c(n) be the constant defined in Theorem 1. Then, for all n ⩾ 3, we have

χ (Rn) ⩾ χ (Qn) ⩾ χ (Gn) ⩾
|Vn|

α(Gn)
=

8
(n
3

)
max{6n − 28, 4n − c(n)}

.

Asymptotically, the bound in this theorem is 2
9n

2(1+ o(1)), which is a weak result. On the other hand, for small values of
n, the theorem gives the best known bounds, namely:

χ (R9) ⩾ χ (Q9) ⩾ 21,

χ (R10) ⩾ χ (Q10) ⩾ 30,

χ (R11) ⩾ χ (Q11) ⩾ 35,

χ (R12) ⩾ χ (Q12) ⩾ 37.

Actually, we will show in Section 4 the following stronger result for n = 9.
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