Discrete Applied Mathematics I (REEN) EIE-HEN

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the chromatic numbers of small-dimensional Euclidean
spaces

Danila Cherkashin "¢, Anatoly Kulikov %-¢, Andrei Raigorodskii %" *

@ Chebyshev Laboratory, St. Petersburg State University, 14th Line V.0., 29B, Saint Petersburg 199178, Russia

b Moscow Institute of Physics and Technology Laboratory of Advanced Combinatorics and Network Applications, Institutsky per. 9.
Dolgoprudny, 141700, Russia

¢ St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, Russia

d St. Petersburg State University, Faculty of Physics, 13B Universitetskaya Emb., St. Petersburg 199034, Russia

€ School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia

f Moscow Institute of Physics and Technology, Faculty of Innovations and High Technology, Department of Discrete Mathematics and
Laboratory of Advanced Combinatorics and Network Applications, Russia

& Moscow State University, Mechanics and Mathematics Faculty, Department of Mathematical Statistics and Random Processes, Russia
" Buryat State University, Institute of Mathematics and Informatics, Russia

ARTICLE INFO ABSTRACT

Article history: This paper is devoted to the study of the graph sequence G, = (V;, E,), where V,, is the
Received 18 March 2017 set of all vectors v € R" with coordinates in {—1, 0, 1} such that |v| = +/3 and E, consists
Received in revised form 26 January 2018 of all pairs of vertices with scalar product 1. We find the exact value of the independence
Acc?pted 19 February 2018 number of G,,. As a corollary we get new lower bounds on x (R") and x(Q") for small values
Available online xxxx of n

Keywords: © 2018 Elsevier B.V. All rights reserved.

Distance graphs
Chromatic number
Independence number

1. Introduction

Let R" be the standard Euclidean space, where the distance between any two points x, y is denoted by |x — y|. Let V be an
arbitrary point set in R". Let a > 0 be a real number. By a distance graph with set of vertices V, we mean the graph G = (V, E)
whose set of edges E contains all pairs of points from V that are at the distance a apart:

E={{xy}: x—yl=a}.

Distance graphs are among the most studied objects of combinatorial geometry. First of all, they are at the ground of
the classical Hadwiger-Nelson problem, which was proposed around 1950 (see [12,27]) and consists in determining the
chromatic number of the space:

xRN =min{y: R"=V,U---uV,, ViVXyeV; [x—y| #1},

i.e., the minimum number of colors needed to color all the points in R" so that any two points at the distance 1 receive
different colors. In other words, it is the chromatic number of the unit distance graph whose vertex set coincides with R".
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Due to the extreme popularity of the subject, colorings of unit distance graphs are very deeply explored. Let us just refer
the reader to several books and survey articles [21,2,5,14,23,25,24,26,28]. In particular, the best known lower bounds for the
chromatic numbers in dimensions < 12 are given below [23,20,8,4,6,18,16,17,15]:

x(R*) > 4[23], x(R’) > 6[20], x(R*)>9[8], x(R®) >9[4, x(R®) > 11[6], x(R’) > 15[23],

x(R®) > 16 [18], x(R%) > 21[16], x(R'")>23[16], x(R')>25[17], x(R") > 27 [15].
Recently further improvements were announced [7,13]:
x(R®) > 12[7], x(R7) > 16 [7], x(R®) > 19[13], x(R') >26(7]. [13]. x(R"") > 32[13], x(R'")> 36 [7].

These improvements are essentially based on computer calculations.
In growing dimensions, the following bounds are the best known [22,18]:

[22] (1.239...+0o(1))" < x(R") < (3 + o(1))" [18].

In this paper, we consider a special sequence of graphs defined in the following way.

Let V, be the set of all vectors v from R" with coordinates in {—1, 0, 1} and |v| = +/3. The set V,, can be considered as the
set of vertices of a graph G, = (V,, E,;), where an edge connects two vertices if and only if the corresponding vectors have
scalar product 1. Note that G; and G, are empty and Gj is just a cube.

Recall that an independent set in a graph is any set of its vertices which are pairwise non-adjacent and the independence
number of G denoted by «(G) is the size of a maximum independent set in the graph G.

Theorem 1. For n > 1, let c(n) denote the following constant:

0 if n=0
c(n)=11 if n=1 (mod 4).
2 if n=2o0r3

Then, the independence number of G, is given by the formula
o(Gy) = max{6n — 28, 4n — 4c(n)}.

Actually, the result of Theorem 1 is a far-reaching generalization of a much simpler lemma proved by Zs. Nagy (see [19])
in 1972 and used not only in combinatorial geometry, but also in Ramsey theory. In this lemma, G, = (V;, E;,), where V,
is the set of all vectors v, [v] = ~/3, with coordinates in {0, 1} and again an edge connects two vertices if and only if the
corresponding vectors have scalar product 1. Lemma states that in this case «(G;) = n — c(n).

Larman and Rogers used the mentioned lemma to prove x(R") > (1 + o(1))n?/6 (in fact, it was suggested by Erdés
and Sés), which was the first nontrivial lower bound on yx(R"). It is worth noting that the chromatic number of G, almost
coincides with the bound n/«(G,), as was shown in [1].

On the other hand there is a natural bijection between {0, 1}" and the subsets of n-element set, which gives deep
combinatorial sense to graphs of the mentioned types. In several recent papers [9,11,10] Frankl and Kupavskii consider
analogues of some classical combinatorial problems in {0, £1} setup.

The proof of Theorem 1 is given in the following parts: some examples showing the lower bound in Theorem 1 and
some preliminaries are given in Section 2; the upper bound is proved in Section 3 (for the case n < 13 we use computer
simulations). Note that, roughly speaking, the quantity 13 is a threshold where the bound 6n — 28 starts dominating the
bound 4n.

As a corollary of Theorem 1 we get the following bounds for the chromatic numbers of Euclidean spaces.

Theorem 2. Let c(n) be the constant defined in Theorem 1. Then, for alln > 3, we have

n n |Vn| _ 8(;)
x(R") = x(Q") = x(Gn) 2 2(Gy) ~ max(6n —28.4n —c(n)]’

Asymptotically, the bound in this theorem is %nz(l 4+ 0(1)), which is a weak result. On the other hand, for small values of
n, the theorem gives the best known bounds, namely:

x(R%) > x(Q%) > 21,
x(R') > x(Q") > 30,
x(R'™) > x(@") > 35,

x(R™) > x(Q") > 37.

Actually, we will show in Section 4 the following stronger result for n = 9.

Please cite this article in press as: D. Cherkashin, et al., On the chromatic numbers of small-dimensional Euclidean spaces, Discrete Applied Mathematics
(2018), https://doi.org/10.1016/j.dam.2018.02.005.




Download English Version:

https://daneshyari.com/en/article/6871192

Download Persian Version:

https://daneshyari.com/article/6871192

Daneshyari.com


https://daneshyari.com/en/article/6871192
https://daneshyari.com/article/6871192
https://daneshyari.com

