Efficient eight-regular circulants based on the Kronecker product

Pranava K. Jha
St. Cloud, MN 56303, United States

ARTICLE INFO

Article history:

Received 4 April 2017
Received in revised form 9 January 2018
Accepted 19 February 2018
Available online 22 March 2018

Keywords:

Eight-regular circulants
Kronecker product
Dense four-regular circulant
Isometric embedding
Network topology
Graphs and networks

Abstract

This paper presents a family of efficient eight-regular circulants representable as the Kronecker product of the dense four-regular circulant on $2 r^{2}+2 r+1$ nodes and the cycle $C_{4 r+3}$, where $r \equiv 0,1,2,4(\bmod 5)$. Each graph is of order $\frac{1}{2}(2 d+1)\left(d^{2}+1\right)$, where d denotes its diameter, d is odd, and $d \equiv 0,1,3,4(\bmod 5)$. Its average distance is about two-thirds of its diameter. Other salient characteristics include high odd girth, three-colorability, and an edge decomposition into Hamiltonian cycles. The baseline of the present study is a theorem by Broere and Hattingh, which states that the Kronecker product of two circulants whose orders are co-prime is a circulant itself.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Circulant graphs possess a number of attractive features such as high symmetry, high connectivity and scalability, based on which they are amenable to an application as a network topology in areas like parallel computers, distributed systems and VLSI [1,9].

Over the years, the four-regular circulants have received a lot of attention. See the surveys [1,9,17] and the references therein. On the other hand, higher-degree circulants have not been studied at length. This is probably because problems in the latter case are relatively challenging. For example, the diameter of a four-regular circulant on n vertices is greater than or equal to $\left\lceil\frac{1}{2}(-1+\sqrt{2 n-1})\right\rceil$, a bound achievable by graphs in a number of families [18]. By contrast, the situation is not so tractable in the case of higher-degree circulants [8].

The author [11] recently presented a family of six-regular circulants representable as the Kronecker product of the Möbius ladder on p vertices and the cycle C_{p+3}, where $p \equiv 4,8(\bmod 12)$. It turns out that these graphs outperform the well-known triple-loop networks [19].

This paper presents a family of eight-regular circulants representable as the Kronecker product of the dense four-regular circulant on $2 r^{2}+2 r+1$ vertices and the cycle $C_{4 r+3}$, where $r \equiv 0,1,2,4(\bmod 5)$. Each graph is such that (i) its odd girth is equal to $2 d+1, d$ being the diameter, (ii) its average distance is about two-thirds of the diameter, (iii) its chromatic number is equal to three, and (iv) it admits a Hamiltonian decomposition. (High odd girth, low average distance, low chromatic number and Hamiltonian decomposition are a big plus in a network.) For certain previous studies on eight-regular circulants, see Dougherty and Faber [5], Lewis [15], and Kreher and Westlund [14].

[^0]
1.1. Definitions and preliminaries

When we speak of a graph, we mean a finite, simple, undirected and connected graph. Let G be a graph, and let $d_{G}(u, v)$ denote the shortest distance between vertices u and v in G. Further, let dia (G) represent its diameter, i.e., $\max \left\{d_{G}(u, v)\right.$: $u, v \in V(G)\}$. A distance-preserving subgraph of a graph is called an isometric subgraph [6]. We employ vertex and node as synonyms, and write $G \cong H$ if G is isomorphic to H.

Say that a vertex v in G is at level i relative to a fixed vertex u if $d_{G}(u, v)=i$. A level diagram of G relative to u consists of a layout of the graph in which vertices at a distance of i from u appear on a "line at a height" of i above u, for $0 \leq i \leq \operatorname{dia}(G)$. Vertices at a distance of $\operatorname{dia}(G)$ from u are called diametrical relative to u. If G is known to be vertex-transitive, a property held by a circulant [7], then the form of its level diagram is independent of the choice of the source vertex.

The Kronecker product (also known as the tensor product, direct product, etc.) $G \times H$ of graphs $G=(U, D)$ and $H=(W, F)$ is defined as follows: $V(G \times H)=U \times W$, and $E(G \times H)=\{\{(a, x),(b, y)\} \mid\{a, b\} \in D$ and $\{x, y\} \in F\}$. It is one of the most important products, with numerous applications in areas such as computer networks, perfect codes and algebraic systems [6].

Let C_{n} denote the cycle on the vertex set $\{0, \ldots, n-1\}, n \geq 3$, where adjacencies $\{i, i+1\}$ exist in the natural way. A spanning cycle in a graph (if one exists) is called a Hamiltonian cycle. Further, a graph is said to admit a Hamiltonian decomposition if its edge set may be partitioned into Hamiltonian cycles. The length of a shortest (induced) odd cycle in a nonbipartite graph G is called its odd girth, denoted by $\operatorname{og}(G)$. Let $\chi(G)$ denote the chromatic number of G. For undefined terms, see Hammack et al. [6].

Proposition 1.1 ([6,4]).

(1) $G \times H$ is connected iff both G and H are connected and at least one of them is nonbipartite.
(2) The degree of a vertex (u, v) in $G \times H$ is equal to the product of the degrees of u and v in G and H, respectively.
(3) $\chi(G \times H) \leq \min \{\chi(G), \chi(H)\}$.
(4) If G and H are both nonbipartite, then $o g(G \times H)=\max \{o g(G), o g(H)\}$.
(5) If G and H are both vertex-transitive, then so is $G \times H$.

Let n, s_{1}, \ldots, s_{k} be such that $n \geq 3$, and $1 \leq s_{1}<s_{2}<\cdots<s_{k} \leq\lfloor n / 2\rfloor$. The circulant $\mathscr{C}_{n}\left(s_{1}, \ldots, s_{k}\right)$ is a graph on the vertex set $\{0, \ldots, n-1\}$, where each vertex i is adjacent to each of $\left(i \pm s_{1}\right) \bmod n, \ldots,\left(i \pm s_{k}\right) \bmod n$. The parameters s_{1}, \ldots, s_{k} are called the step sizes or jumps. If n is even and $s_{k}=n / 2$, then the graph is $(2 k-1)$-regular, otherwise it is $2 k$-regular. It is known that [3] (i) $\mathscr{C}_{n}\left(s_{1}, \ldots, s_{k}\right)$ is connected iff $\operatorname{gcd}\left(n, s_{1}, \ldots, s_{k}\right)=1$, and (ii) $\mathscr{C}_{n}\left(s_{1}, \ldots, s_{k}\right)$ is bipartite iff n is even, and each of s_{1}, \ldots, s_{k} is odd.

Here is the baseline of the present study.
Proposition 1.2 ([4]). If G and H are circulants whose orders are co-prime, then $G \times H$ is a circulant itself.

1.2. Distances in the Kronecker product

The distance in the Kronecker product is governed by a formula that is based on a shortest even walk and a shortest odd walk (and the respective even distance and the odd distance) between two vertices in the factor graphs [13]. To that end, let $d_{G}^{e}(a, b)$ and $d_{G}^{o}(a, b)$ denote the shortest even distance and the shortest odd distance, respectively, between vertices a and b in a graph G. (If G is nonbipartite, then the two parameters are finite in respect of every pair of vertices.)

Proposition 1.3 ([13]). If G and H are both nonbipartite graphs, then $d_{G \times H}((a, x),(b, y))=\min \left\{\max \left\{d_{G}^{e}(a, b), d_{H}^{e}(x, y)\right\}\right.$, $\left.\max \left\{d_{G}^{o}(a, b), d_{H}^{o}(x, y)\right\}\right\}$.

Corollary 1.4 ([13]). If a and b are both odd and $a \geq b$, then

$$
\operatorname{dia}\left(C_{a} \times C_{b}\right)= \begin{cases}a-1 & \text { if } a=b \\ \max \left\{\frac{1}{2}(a-1), b\right\} & \text { if } a>b\end{cases}
$$

What follows

Section 2 introduces the dense four-regular circulant $\mathscr{C}_{2 r^{2}+2 r+1}(1,2 r+1)$, while Section 3 presents the actual family of eight-regular circulants. The distance-wise node distributions of the resulting graphs appear next, while their jump sequences appear in Section 5.

See Table 1 for the essential nomenclature.

https://daneshyari.com/en/article/6871214

Download Persian Version:
https://daneshyari.com/article/6871214

Daneshyari.com

[^0]: E-mail address: pkjha384@hotmail.com.

