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1. Introduction

Sets of integers which do not contain any solutions to some linear equation have received a lot of attention in the
field of combinatorial number theory. Two particularly well-studied examples are sum-free sets (sets avoiding solutions to
the equation x + y = z) and progression-free sets (sets that do not contain any 3-term arithmetic progression x, y, z or
equivalently avoid solutions to the equation x 4+ z = 2y). A lot of effort has gone into determining the size of the largest
solution-free subset of {1, ..., n} and other sets of integers, and into computing (asymptotically) the number of (maximal)
solution-free subsets of {1, ..., n}.

In this paper we initiate the study of the computational complexity of problems involving solution-free subsets. We are
primarily concerned with determining the size of the largest subset of an arbitrary set of integers A which avoids solutions
to a specified linear equation £; in particular, we focus on sum-free and progression-free sets, but many of our results also
generalise to larger families of linear equations. For suitable equations £, we demonstrate that the problem of deciding
whether A contains a solution-free subset of size at least k is NP-complete (see Section 2); we further show that it is hard
to approximate the size of the largest solution-free subset within a factor (1 + ¢) (see Section 3), or to determine for a
constant ¢ < 1 whether A contains a solution-free subset of size at least c|A| (see Section 6). On the other hand, in Section 5
we see that the decision problem is fixed-parameter tractable when parameterised by either the cardinality of the desired
solution-free set, or by the number of elements of A we can exclude from such a set. We also consider the complexity, with
respect to various parameterisations, of counting the number of solution-free sets of a specified size (see Section 7): while
there is clearly no polynomial-time algorithm in general, the problem is fixed-parameter tractable when parameterised by
the number of elements we can exclude from A; we show that there is unlikely to be a fixed-parameter algorithm to solve
the counting problem exactly when the size of the solution-free sets is taken as the parameter, but we give an efficient
approximation algorithm for this setting. Finally, in Section 8 we consider all of these questions in a variant of the problem,
where we specify that a given solution-free subset B C A must be included in any solution.
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Many of our results are based on the fact that we can set up polynomial-time reductions in both directions between our
problem and (different versions of) the well-known hitting set problem for hypergraphs. In particular, in Section 2.1 we
provide a construction that has several applications throughout the paper. In Section 4 we also derive some new lower-
bounds on the size of the largest solution-free subset of an arbitrary set of integers for certain equations £, which may be
of independent interest. Our approach here utilises a trick of Alon and Kleitman [3] which transfers the problem into the
setting of solution-free sets in cyclic groups.

Our aim is to provide a thorough introduction to the study of (parameterised) complexity questions involving £-free sets
of integers. As such, some of the results presented have straightforward proofs, such as the parameterised complexity results
discussed in Section 5, whilst other proofs are more involved. However, even the simplest of our results lead to natural open
questions. In Section 9 we collect together a number of open problems which we hope will stimulate further interest in the
topic.

In the remainder of this section, we give some background on solution-free sets in Section 1.1 and review the relevant
notions from the study of computational complexity in Section 1.2. In Section 1.3 we outline the main results of the paper.

1.1. Background on solution-free sets

Consider a fixed linear equation £ of the form

QX1+ -+ axg =>b (1)
where ay, ..., a;, b € Z. We say that £ is homogeneous if b = 0. If

Z a; = b=0

ie[k]
then we say that £ is translation-invariant. (Here [k] denotes the set {1, ..., k}.) Let £ be translation-invariant. Then notice
that (x, ..., x) is a ‘trivial’ solution of (1) for any x. More generally, a solution (xq, ..., Xx) to £ is said to be trivial if there
exists a partition Py, . . ., P, of [k] so that:

(i) x; = x; for every i, j in the same partition class P;;
(ii) Foreachr € [£], ) ;p.ai = 0.

A set A of integers is £-free if A does not contain any non-trivial solutions to £. If the equation £ is clear from the context,
then we simply say A is solution-free.

1.1.1. Sum-free sets

A set S (of integers or elements of a group) is sum-free if there does not exist x, y, z in S such that x + y = z. The topic of
sum-free sets has a rich history spanning a number of branches of mathematics. In 1916 Schur [42] proved that, givenr € N,
if n is sufficiently large, then any r-colouring of [n] := {1, ..., n} yields a monochromatic triple x, y, z such that x + y = z.
(Equivalently, [n] cannot be partitioned into r sum-free sets.) This theorem was followed by other seminal related results
such as van der Waerden’s theorem [46], and ultimately led to the birth of arithmetic Ramsey theory.

Paul Erdés had a particular affinity towards sum-free sets. In 1965 he [20] proved one of the cornerstone results in the
subject: every set of n non-zero integers A contains a sum-free subset of size at least n/3. Employing the probabilistic method,
Alon and Kleitman [3] improved this bound to (n+ 1)/3 and further, Kolountzakis [33] gave a polynomial time algorithm for
constructing such a sum-free subset. Then, using a Fourier-analytical approach, Bourgain [11] further improved the bound
to(n+2)/3 in the case when A consists of positive integers. Erdés [20] also raised the question of determining upper bounds
for this problem: recently Eberhard, Green and Manners [ 18] asymptotically resolved this important classical problem by
proving that there is a set of positive integers A of size n such that A does not contain any sum-free subset of size greater
than n/3 + o(n). This result raises the question of whether one can decide efficiently whether a set A of non-negative integers
contains a sum-free subset of size at least c|A| for some ¢ > 1/3. As we shall see in Section 6, the answer is likely to be no.

In Section 7 we consider the complexity, with respect to various parameterisations, of counting the number of sum-free
sets of a specified size. A number of important questions concerning (counting) sum-free sets were raised in two papers of
Cameron and Erdés [13,14]. In [13], Cameron and Erdés conjectured that there are ®@(2"/?) sum-free subsets of [n]. Here, the
lower bound follows by observing that the largest sum-free subset of [n] has size [n/27; this is attained by the set of odds
in[n] and by {|n/2] + 1, ..., n}. Then, for example, by taking all subsets of [n] containing only odd numbers one obtains at
least 22 sum-free subsets of [n]. After receiving much attention, the Cameron-Erdés conjecture was proven independently
by Green [28] and Sapozhenko [40]. Given a set A of integers we say S C A is a maximal sum-free subset of A if S is sum-free
and it is not properly contained in another sum-free subset of A. Cameron and Erdés [ 14] raised the question of how many
maximal sum-free subsets there are in [n]. Very recently, this question has been resolved via a combinatorial approach by
Balogh, Liu, Sharifzadeh and Treglown [7,8].

Sum-free sets have also received significant attention with respect to groups. One highlight in this direction is work of
Diananda and Yap [15] and Green and Ruzsa [29] that determines the size of the largest sum-free subset for every finite
abelian group. In each case the largest sum-free set has size linear in the size of the abelian group. Another striking result in
the area follows from Gowers’ work on quasirandom groups. Indeed, Gowers [27] proved that there are non-abelian groups
for which the largest sum-free subset has sublinear size, thereby answering a question of Babai and Sés [5]. See the survey
of Tao and Vu [44] for a discussion on further problems concerning sum-free sets in groups.
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