
Discrete Applied Mathematics () –

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Probability distributions for the Linux entropy estimator
Yongjin Yeom, Ju-Sung Kang ∗

Department of Mathematics and Financial Information Security, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707,
Republic of Korea

a r t i c l e i n f o

Article history:
Received 29 January 2016
Received in revised form 19 June 2016
Accepted 12 July 2016
Available online xxxx

Keywords:
Random number generator
Entropy
Entropy estimator
Linux pseudo-random number generator

a b s t r a c t

We propose a mathematical model of the entropy estimator in the Linux random number
generator. First, we construct a probability model for random event times in entropy
sources, and then precisely derive probability distributions for the first, second, and third
time differences. Second, we obtain the probability distribution for the minimum of
absolute values of these differences, which is used for the estimated entropy in the Linux
system. Moreover, we provide several simulations that display the accuracy of our results
for various parameters.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Random numbers are indispensable to modern cryptography. The security of encryption algorithms and protocols in
cryptosystem is guaranteed by assuming the existence of ideal random number generators (RNGs). For instance, encryption
keys should be selected from the uniformly distributed key space, and nonces in challenge–response protocols are required
to be sufficiently close to full entropy.

RNG should generate an unbiased, independent, and unpredictable sequence of numbers. However, these goals are difficult
to achieve in a real system. A typical model of RNG [7] collects entropy from noise sources and produces pseudo-random
numbers using a deterministic algorithm called a PRNG. PRNG uses small input called seed to produce output sequences,
which are hardly statistically distinguished from random numbers.

Linux PRNG (LRNG) is one of the most popular RNGs. LRNG is widely adopted in Linux and embedded systems as well
as in several OSes for mobile devices. LRNG has been a part of the Linux kernel since 1994 and its core structure has hardly
changed to date. Nevertheless, the design rationale of LRNG remains unclear. The structure can be divided into three parts:
collecting entropy, managing entropy pools, and generating pseudo-random numbers. Several security analyses of LRNG
have been conducted [5,9,14]. In 2006, Gutterman et al. [5] provided a full description of LRNG and reported theweakness in
entropy pools and the random number generating algorithm. They checked the entropy collecting part and experimentally
show that entropy estimation in LRNG is highly conservative. In 2012, Lacharme [9] proposed new observations on the
entropy collecting part in the revised LRNG of version 3.X [10]. Empirical entropy analysis shows that the estimated entropy
computed by LRNG is lower than the entropy based on empirical frequencies. A formal security model for PRNG with input
was recently considered by Dodis et al. [4]. They defined new PRNG construction and related security notions. As a result,
LRNG is not robust in their model because of the weakness in the entropy estimator and internal mixing function. However,
mathematical results based on the probability distributions for the entropy estimator in LRNG are still unavailable.

∗ Corresponding author. Fax: +82 29104739.
E-mail addresses: salt@kookmin.ac.kr (Y. Yeom), jskang@kookmin.ac.kr (J.-S. Kang).

http://dx.doi.org/10.1016/j.dam.2016.07.019
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.07.019
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:salt@kookmin.ac.kr
mailto:jskang@kookmin.ac.kr
http://dx.doi.org/10.1016/j.dam.2016.07.019

2 Y. Yeom, J.-S. Kang / Discrete Applied Mathematics () –

Fig. 1. Brief structure of the Linux PRNG.

In the assessment of cryptographic modules, entropy estimation is a major concern for both developers and testing labs.
However, in security evaluation systems such as cryptographic module validation program (CMVP) [3,11] and Common
Criteria (CC) [2],which are used to validate the security of RNG in amodule or product, statistical tests [13] aremore common
than entropy estimation. As the output of LRNG is completely determined by the entropy sources, it is very important to
estimate the amount of entropy harvested from the noise sources. Consequently, the entropy estimator and the entropy
counter play key roles in the security of LRNG. Recently, NIST announced the second draft of SP 800-90B [1], which provides
systematic approaches for testing entropy sources. An ISO standard document for entropy estimations [6] is currently being
developed and will be published as international standard methods for validating RNGs in the cryptographic modules.

Our contributions:
Under the assumption that a random event occurs with probability p at a discrete time, we derive the probability

distribution for the entropy estimator in LRNG. From the sequence of randomvariables for event times,weprecisely calculate
the distributions of their differences up to order three and derive the probability distribution for the minimum of absolute
values of these differences which is used for estimating entropy in LRNG.

Our result contributes to mitigate the security concern caused by incorrect entropy estimations, particularly when
entropy is harvested using the noise sources generated from generic random time differences.

2. Random number generation in Linux

2.1. Structure of the LRNG

The RNG in the Linux system is implemented in the kernel and managed by the operating system. In the Linux system,
OS collects entropy from the environment and generates random numbers. Whenever a user needs random numbers, two
devices, called /dev/random and /dev/urandom, produce the required bytes of random data. The difference between the
two devices lies in managing their output pools.

As depicted in Fig. 1, the process of random number generation consists of three parts as follows:
• Collecting entropy
• Managing entropy pools
• Generating random numbers.

In the entropy collecting part, LRNG collects data from various entropy sources including interrupt information, disk
timing and input devices. Entropy inputs are plunged into the entropy pool through the mixing function. Meanwhile, the
entropy estimator evaluates input data and determines the amount of entropy. For each input, the entropy counter is
adjusted to indicate how much entropy the pool holds.

Three pools are managed in LRNG. The input pool holds data accumulated from the entropy sources. Two output pools
are dedicated to /dev/random and /dev/urandom devices, respectively. They are independent of each other and have
their own entropy counters.

When a user extracts data from the device /dev/random using the output function, the corresponding entropy counters
are adjusted. The output function is designed to generate output by hashing data in the output pool and simultaneously
updates the pool by the feedback function.

If the counter needs to decrease to zero, the output request is blocked. To produce high quality random bits, the output is
not allowed unless the pool holds sufficient entropy. By contrast,/dev/urandom returns asmany bytes as requiredwithout
blocking regardless of the status of its entropy counter. The whole structure of the LRNG is described in [9].

2.2. Entropy estimator in LRNG

For each event, the LRNG estimates the amount of entropy harvested from the event. The entropy estimator only uses
information on the event time using jiffy count. The jiffy is a time interval determined by the Linux kernel. The kernel uses

Download English Version:

https://daneshyari.com/en/article/6871297

Download Persian Version:

https://daneshyari.com/article/6871297

Daneshyari.com

https://daneshyari.com/en/article/6871297
https://daneshyari.com/article/6871297
https://daneshyari.com

