Lexicographical polytopes

Michele Barbato, Roland Grappe*, Mathieu Lacroix, Clément Pira
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, (UMR 7030), F-93430, Villetaneuse, France

ARTICLE INFO

Article history:

Received 30 March 2015
Received in revised form 4 April 2017
Accepted 19 April 2017
Available online xxxx

Keywords:

Lexicographical polytopes
Polyhedral description
Superdecreasing knapsacks

Abstract

Within a fixed integer box of \mathbb{R}^{n}, lexicographical polytopes are the convex hulls of the integer points that are lexicographically between two given integer points. We provide their descriptions by means of linear inequalities.

© 2017 Elsevier B.V. All rights reserved.

Throughout, ℓ, u, r, s will denote integer points satisfying $\ell \leq r \leq u$ and $\ell \leq s \leq u$, that is r and s are within $[\ell, u]$. A point $x \in \mathbb{Z}^{n}$ is lexicographically smaller than $y \in \mathbb{Z}^{n}$, denoted by $x \preccurlyeq y$, if $x=y$ or the first nonzero coordinate of $y-x$ is positive. We write $x \prec y$ if $x \preccurlyeq y$ and $x \neq y$. The lexicographical polytope $P_{\ell, u}^{r \preccurlyeq s}$ is the convex hull of the integer points within [ℓ, u] that are lexicographically between r and s :

$$
P_{\ell, u}^{r \preccurlyeq s}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \ell \leq x \leq u, r \preccurlyeq x \preccurlyeq s\right\} .
$$

The top-lexicographical polytope $P_{\ell, u}^{\prec s}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \ell \leq x \leq u, x \preccurlyeq s\right\}$ is the special case when $r=\ell$. Similarly, the bottom-lexicographical polytope is $P_{\ell, u}^{r \preccurlyeq}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \ell \leq x \leq u, r \preccurlyeq x\right\}$.

Given $a, u \in \mathbb{R}_{+}^{n}$ and $b \in \mathbb{R}_{+}$, the knapsack polytope defined by $K_{u}^{a, b}=\operatorname{conv}\left\{x \in \mathbb{Z}^{n}: \mathbf{0} \leq x \leq u\right.$, $\left.a x \leq b\right\}$ is superdecreasing if:

$$
\begin{equation*}
\sum_{i>k} a_{i} u_{i} \leq a_{k} \quad \text { for } k=1, \ldots, n \tag{1}
\end{equation*}
$$

Close relations between top-lexicographical and superdecreasing knapsack polytopes appear in the literature. For the 0/1 case, that is when $\ell=\mathbf{0}$ and $u=\mathbf{1}$, Gillmann and Kaibel [2] first noticed that top-lexicographical polytopes are special cases of superdecreasing knapsack ones, and the converse has been later established by Muldoon et al. [5]. Recently, Gupte [3] generalized the latter result by showing that all superdecreasing knapsacks are top-lexicographical polytopes.

To prove this last statement, Gupte [3] observes that a superdecreasing knapsack $K_{u}^{a, b}$ is the top-lexicographical polytope $P_{\mathbf{0}, u}^{<s}$, where s the lexicographically greatest integer point of $K_{u}^{a, b}$. The non trivial inclusion actually holds because every integer point x of $P_{\mathbf{0}, u}^{\prec s}$ satisfies $a x \leq a s$. Indeed, by definition, if $x \prec s$, there exists $k \in\{1, \ldots, n\}$ such that $x_{k}+1 \leq s_{k}$ and $x_{i}=s_{i}$

[^0]

Fig. 1. Path representation of the points of $X_{\ell, u}^{\prec s}$.
for $i<k$. Hence, we have $b-a x \geq a s-a x \geq \sum_{i>k} a_{i}\left(s_{i}-x_{i}\right)+a_{k} \geq \sum_{i>k} a_{i}\left(s_{i}-x_{i}+u_{i}\right) \geq 0$, because of (1), $s_{i} \geq 0$ and $u_{i} \geq x_{i}$.

It turns out that top-lexicographical polytopes are superdecreasing knapsack polytopes. Indeed, let $P_{\ell, u}^{\prec s}$ be a toplexicographical polytope for some s within $[\ell, u]$. Possibly after translating, we may assume $\ell=\mathbf{0}$. Define a by $a_{k}=$ $\sum_{i>k} a_{i} u_{i}+1$, for $k=1, \ldots, n$, and let $b=a s$. Since the associated knapsack polytope $K_{u}^{a, b}$ is superdecreasing, if $x \preccurlyeq s$ then $a x \leq a s=b$, for all x within [$\mathbf{0}, u$]. Moreover, the converse holds because, inequalities (1) being all strict, $s \prec x$ implies $b=a s<a x$. Therefore, $P_{\mathbf{0}, u}^{\prec s}=K_{u}^{a, b}$. These observations are summarized in the following.

Observation 1. Superdecreasing knapsacks are top-lexicographical polytopes, and conversely (up to translations).

Motivated by a wide range of applications, such as knapsack cryptosystems [6] or binary expansion of bounded integer variables (e.g., [8, p. 477]), several papers are devoted to the polyhedral description of these families of polytopes. For the $0 / 1$ case, the description appeared in [4] from the knapsack point of view. It was later rediscovered from the lexicographical point of view in [2,5]. Moreover, Muldoon et al. [5] and Angulo et al. [1] independently showed that intersecting a 0/1 topwith a $0 / 1$ bottom-lexicographical polytope yields the description of the corresponding lexicographical polytope. Recently, these results were generalized for the bounded case by Gupte [3].

In this paper, we provide the description of the lexicographical polytopes using extended formulations. Our approach provides alternative proofs of the aforementioned results of Gupte [3].

The outline of the paper is as follows. In Section 1, we provide a flow based extended formulation of the convex hull of the componentwise maximal points of a top-lexicographical polytope. Projecting this formulation is surprisingly straightforward, and thus we get the description in the original space. In Section 2, using the fact that a top-lexicographical polytope is, up to translation, the submissive of the above convex hull, we derive the description of top-lexicographical polytopes. We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

1. Convex hull of componentwise maximal points

From now on, $X_{\ell, u}^{\preccurlyeq s}$ will denote the set of the points $p^{i}=\left(s_{1}, \ldots, s_{i-1}, s_{i}-1, u_{i+1}, \ldots, u_{n}\right)$, for $i=1, \ldots, n+1$ such that $s_{i}>\ell_{i}$, where $p^{n+1}=s$ by definition. Note that $X_{\ell, u}^{\preccurlyeq s}$ consists of the componentwise maximal integer points of $P_{\ell, u}^{\prec s}$, to which we added, for later convenience, the point $p^{n}=\left(s_{1}, \ldots, s_{n-1}, s_{n}-1\right)$ if $s_{n}>\ell_{n}$.

1.1. A flow model for $X_{\ell, u}^{\prec s}$

We first model the points of $X_{\ell, u}^{\prec s}$ as paths from 1 to $n+1$ in the digraph given in Fig. 1 .
Our digraph is composed of $n+1$ layers, each containing two nodes except the first and the last ones. There are three arcs connecting the layer k to the layer $k+1$, an upper arc y_{k}, a diagonal arc t_{k} and a lower arc z_{k}. The only exception concerns the first level, which does not have the upper arc.

The arcs connecting two successive layers correspond to a coordinate of $x \in X_{\ell, u}^{\prec,}$. More precisely, given a directed path P from 1 to $n+1$, we define the point x by setting, for $k=1, \ldots, n$,

$$
x_{k}= \begin{cases}u_{k} & \text { if } y_{k} \in P \\ s_{k}-1 & \text { if } t_{k} \in P \\ s_{k} & \text { if } z_{k} \in P\end{cases}
$$

As shown in Observation 2, the set of (x, y, z, t) satisfying the following set of inequalities is an extended formulation of $\operatorname{conv}\left(X_{\ell, u}^{\preccurlyeq S}\right):$

$$
\begin{align*}
x_{i}=u_{i} y_{i}+\left(s_{i}-1\right) t_{i}+s_{i} z_{i} & \text { for } i=1, \ldots, n, \tag{2}\\
y_{1}=0 & \tag{3}\\
y_{i}=y_{i-1}+t_{i-1} & \text { for } i=2, \ldots, n, \tag{4}\\
z_{i}=z_{i+1}+t_{i+1} & \text { for } i=1, \ldots, n-1, \\
t_{i}=0 & \text { whenever } s_{i}=\ell_{i}, \\
y_{n}+t_{n}+z_{n}=1 & \\
y_{i}, t_{i}, z_{i} \geq 0 & \text { for } i=1, \ldots, n .
\end{align*}
$$

https://daneshyari.com/en/article/6871307

Download Persian Version:
https://daneshyari.com/article/6871307

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Michele.Barbato@lipn.univ-paris13.fr (M. Barbato), Roland.Grappe@lipn.univ-paris13.fr (R. Grappe), Mathieu.Lacroix@lipn.univ-paris13.fr (M. Lacroix), Clement.Pira@lipn.univ-paris13.fr (C. Pira).
 http://dx.doi.org/10.1016/j.dam.2017.04.022
 0166-218X/© 2017 Elsevier B.V. All rights reserved.

