Degenerate matchings and edge colorings

Julien Baste ${ }^{\mathrm{a}, \mathrm{b}}$, Dieter Rautenbach ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Sorbonne Université, CNRS, Laboratoire d'Informatique de Paris 6, F-75005 Paris, France
${ }^{\text {b }}$ LIRMM, Université de Montpellier, Montpellier, France
${ }^{\text {c }}$ Institute of Optimization and Operations Research, Ulm University, Ulm, Germany

ARTICLE INFO

Article history:

Received 15 May 2017
Received in revised form 22 December 2017
Accepted 8 January 2018
Available online xxxx

Keywords:

Matching
Edge coloring
Induced matching
Acyclic matching
Uniquely restricted matching

Abstract

A matching M in a graph G is r-degenerate if the subgraph of G induced by the set of vertices incident with an edge in M is r-degenerate. Goddard, Hedetniemi, Hedetniemi, and Laskar (Generalized subgraph-restricted matchings in graphs, Discrete Mathematics 293 (2005) 129-138) introduced the notion of acyclic matchings, which coincide with 1degenerate matchings. Solving a problem they posed, we describe an efficient algorithm to determine the maximum size of an r-degenerate matching in a given chordal graph. Furthermore, we study the r-chromatic index of a graph defined as the minimum number of r-degenerate matchings into which its edge set can be partitioned, obtaining upper bounds and discussing extremal graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Matchings in graphs are a central topic of graph theory and combinatorial optimization [25]. While classical matchings are tractable, several well known types of more restricted matchings, such as induced matchings [8,31] or uniquely restricted matchings [17], lead to hard problems. Goddard, Hedetniemi, Hedetniemi, and Laskar [15] proposed to study so-called subgraph-restricted matchings in general. In particular, they introduce the notion of acyclic matchings. By a simple yet elegant argument (cf. Theorem 4 in [15]), they show that finding a maximum acyclic matching in a given graph is hard in general, and they explicitly pose the problem to describe a fast algorithm for the acyclic matching number in interval graphs. In the present paper, we solve this problem for the more general chordal graphs. Furthermore, we study the edge coloring notion corresponding to acyclic matchings.

Before we give exact definitions and discuss our results as well as related research, we introduce some terminology. We consider finite, simple, and undirected graphs, and use standard notation. A matching in a graph G is a subset M of the edge set $E(G)$ of G such that no two edges in M are adjacent. Let $V(M)$ be the set of vertices incident with an edge in M. A matching M is induced [8] if the subgraph $G[V(M)]$ of G induced by the set $V(M)$ is 1-regular, that is, M is the edge set of $G[V(M)]$. Induced matching are also known as strong matchings. A matching M is uniquely restricted [17] if there is no other matching M^{\prime} in G distinct from M that satisfies $V(M)=V\left(M^{\prime}\right)$. It is easy to see that M is uniquely restricted if and only if there is no M-alternating cycle in G, which is a cycle in G every second edge of which belongs to M [17]. Finally, M is acyclic [15] if $G[V(M)]$ is a forest. Let $v(G), v_{s}(G), v_{u r}(G)$, and $v_{1}(G)$ be the maximum sizes of a matching, an induced matching, a uniquely restricted matching, and an acyclic matching in G, respectively. Since every induced matching is acyclic, and every acyclic matching is uniquely restricted, we have

$$
v_{s}(G) \leq v_{1}(G) \leq v_{u r}(G) \leq v(G)
$$

We chose the notation " $\nu_{1}(G)$ " rather than something like " $v_{a c}(G)$ ", because we consider a further natural generalization.

[^0]For a non-negative integer r, a graph G is r-degenerate if every subgraph H of G of order at least 1 has a vertex of degree at most r in H. Note that a graph is a forest if and only if it is 1-degenerate. An r-degenerate order of a graph G is a linear order u_{1}, \ldots, u_{n} of its vertices such that, for every i in [$\left.n\right]$, the vertex u_{i} has degree at most r in $G\left[\left\{u_{i}, \ldots, u_{n}\right\}\right]$, where [n] is the set of the positive integers at most n. Clearly, a graph is r-degenerate if and only if it has an r-degenerate order.

Now, let a matching M in a graph G be r-degenerate if the induced subgraph $G[V(M)]$ is r-degenerate, and let $v_{r}(G)$ denote the maximum size of an r-degenerate matching in G.

For every type of matching, there is a corresponding edge coloring notion. An edge coloring of a graph G is a partition of its edge set into matchings. An edge coloring is induced (strong), uniquely restricted, and r-degenerate if each matching in the partition has this property, respectively. Let $\chi^{\prime}(G), \chi_{s}^{\prime}(G), \chi_{u r}^{\prime}(G)$, and $\chi_{r}^{\prime}(G)$ be the minimum numbers of colors needed for the corresponding colorings, respectively. Clearly,

$$
\chi_{s}^{\prime}(G) \geq \chi_{1}^{\prime}(G) \geq \chi_{u r}^{\prime}(G) \geq \chi^{\prime}(G)
$$

In view of the hardness of the restricted matching notions, lower bounds on the matching numbers [18-21], upper bounds on the chromatic indices [3,4], efficient algorithms for restricted graph classes [9-11,13,26], and approximation algorithms have been studied [4,30]. There is only few research concerning acyclic matchings; Panda and Pradhan [29] describe efficient algorithms for chain graphs and bipartite permutation graphs.

Vizing's [32] famous theorem says that the chromatic index $\chi^{\prime}(G)$ of G is either $\Delta(G)$ or $\Delta(G)+1$, where $\Delta(G)$ is the maximum degree of G. Induced edge colorings have attracted much attention because of the conjecture $\chi_{s}^{\prime}(G) \leq \frac{5}{4} \Delta(G)^{2}$ posed by Erdős and Nešetřil (cf. [12]). Building on earlier work of Molloy and Reed [28], Bruhn and Joos [7] showed $\chi_{s}^{\prime}(G) \leq 1.93 \Delta(G)^{2}$ provided that $\Delta(G)$ is sufficiently large. In [4] it is shown that $\chi_{u r}^{\prime}(G) \leq \Delta(G)^{2}$ with equality if and only if G is the complete bipartite graph $K_{\Delta(G), \Delta(G)}$.

Our results are upper bounds on $\chi_{r}^{\prime}(G)$ with the discussion of extremal graphs, and an efficient algorithm for $v_{r}(G)$ in chordal graphs, solving the problem posed in [15].

2. Bounds on the r-degenerate chromatic index

Since, for every two positive integers r and Δ, every r-degenerate matching of the complete bipartite graph $K_{\Delta, \Delta}$ of order 2Δ has size at most r, we obtain $\chi_{r}^{\prime}\left(K_{\Delta, \Delta}\right) \geq \frac{\Delta^{2}}{r}$.

Our first result gives an upper bound in terms of r and Δ.
Theorem 1. If r is a positive integer and G is a graph of maximum degree at most Δ, then

$$
\begin{equation*}
\chi_{r}^{\prime}(G) \leq \frac{2(\Delta-1)^{2}}{r+1}+2(\Delta-1)+1 \tag{1}
\end{equation*}
$$

Proof. Let $K=\left\lfloor\frac{2(\Delta-1)^{2}}{r+1}+2(\Delta-1)+1\right\rfloor$. The proof is based on an inductive coloring argument. We may assume that all but exactly one edge $u v$ of G are colored using colors in [K] such that, for every color α in [K], the edges of G colored with α form an r-degenerate matching. We consider the colors in $[K]$ that are forbidden by colors of the edges close to $u v$. In order to complete the proof, we need to argue that there is always still some available color for $u v$ in $[K]$.

Recall that $N_{G}(u)$ is the neighborhood $\{v \in V(G): u v \in E(G)\}$ of u in G, and that $N_{G}[u]$ is the closed neighborhood $\{u\} \cup N_{G}(u)$ of u in G.

We introduce some notation illustrated in Fig. 1. Let $N_{u}=N_{G}(u) \backslash N_{G}[v], N_{v}=N_{G}(v) \backslash N_{G}[u]$, and $N_{u, v}=N_{G}(u) \cap N_{G}(v)$. Let $n_{u}=\left|N_{u}\right|, n_{v}=\left|N_{v}\right|$, and $n_{u, v}=\left|N_{u, v}\right|$. Clearly, $n_{u}+n_{u, v}=d_{G}(u)-1 \leq \Delta-1$ and $n_{v}+n_{u, v}=d_{G}(v)-1 \leq \Delta-1$. Let E_{u} be the set of edges between u and N_{u}, E_{v} be the set of edges between v and $N_{v}, E_{u, v}$ be the set of edges between $\{u, v\}$ and $N_{u, v}$, and, for every vertex $w \in N_{u} \cup N_{v} \cup N_{u, v}$, let E_{w} be the set of edges incident with w but not incident with u or v. Clearly, $\left|E_{u}\right|+\left|E_{v}\right|+\left|E_{u, v}\right|=\left(d_{G}(u)-1\right)+\left(d_{G}(v)-1\right) \leq 2(\Delta-1)$ and $\left|E_{w}\right| \leq \Delta-1$ for every vertex $w \in N_{u} \cup N_{v} \cup N_{u, v}$.

Let \mathcal{F}_{1} be the colors that appear on edges in $E_{u} \cup E_{v} \cup E_{u, v}$. Clearly, every color in \mathcal{F}_{1} is forbidden for $u v$, because each color class must be a matching. Let \mathcal{F}_{2} be the colors α in $[K]$ that do not belong to \mathcal{F}_{1} such that

$$
d_{u}^{\alpha}+2 d_{u, v}^{\alpha}+d_{v}^{\alpha} \geq r+1
$$

where d_{u}^{α} is the number of vertices in N_{u} incident with an edge colored α, d_{v}^{α} is the number of vertices in N_{v} incident with an edge colored α, and $d_{u, v}^{\alpha}$ is the number of vertices in $N_{u, v}$ incident with an edge colored α. Note that, since \mathcal{F}_{1} and \mathcal{F}_{2} are disjoint, none of the edges contributing to $d_{u}^{\alpha}+2 d_{u, v}^{\alpha}+d_{v}^{\alpha}$ is incident with u or v.

If there is some α in $[K] \backslash\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right)$, then neither u nor v is incident with an edge of color α, and $d_{u}^{\alpha}+2 d_{u, v}^{\alpha}+d_{v}^{\alpha} \leq r$. This implies $\min \left\{d_{u}^{\alpha}+d_{u, v}^{\alpha}, d_{v}^{\alpha}+d_{u, v}^{\alpha}\right\} \leq\lfloor r / 2\rfloor \leq r-1$ and $\max \left\{d_{u}^{\alpha}+d_{u, v}^{\alpha}, d_{v}^{\alpha}+d_{u, v}^{\alpha}\right\} \leq r$. Hence, coloring $u v$ with color α, the vertices incident with the edges of G colored α induce an r-degenerate graph G_{α}. In fact, if $d_{u}^{\alpha}+d_{u, v}^{\alpha} \leq d_{v}^{\alpha}+d_{u, v}^{\alpha}$, then u has $d_{u}^{\alpha}+d_{u, v}^{\alpha}+1 \leq r$ neighbors in G_{α}, and v has $d_{u}^{\alpha}+d_{u, v}^{\alpha}+1 \leq r+1$ neighbors in G_{α}, one of which is u. Since $G_{\alpha}-\{u, v\}$ is r-degenerate by assumption, it follows that G_{α} is r-degenerate.

As explained above this would complete the proof. Therefore, we may assume that $\mathcal{F}_{1} \cup \mathcal{F}_{2}=[K]$.

https://daneshyari.com/en/article/6871336

Download Persian Version:

https://daneshyari.com/article/6871336

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Julien.Baste@lip6.fr, baste@lirmm.fr (J. Baste), dieter.rautenbach@uni-ulm.de (D. Rautenbach).

