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a b s t r a c t

A matching M in a graph G is r-degenerate if the subgraph of G induced by the set of
vertices incident with an edge in M is r-degenerate. Goddard, Hedetniemi, Hedetniemi,
and Laskar (Generalized subgraph-restricted matchings in graphs, Discrete Mathematics
293 (2005) 129–138) introduced the notion of acyclic matchings, which coincide with 1-
degenerate matchings. Solving a problem they posed, we describe an efficient algorithm
to determine the maximum size of an r-degenerate matching in a given chordal graph.
Furthermore,we study the r-chromatic index of a graphdefined as theminimumnumber of
r-degeneratematchings intowhich its edge set can be partitioned, obtaining upper bounds
and discussing extremal graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Matchings in graphs are a central topic of graph theory and combinatorial optimization [25]. While classical matchings
are tractable, severalwell known types ofmore restrictedmatchings, such as inducedmatchings [8,31] or uniquely restricted
matchings [17], lead to hard problems. Goddard, Hedetniemi, Hedetniemi, and Laskar [15] proposed to study so-called
subgraph-restricted matchings in general. In particular, they introduce the notion of acyclic matchings. By a simple yet
elegant argument (cf. Theorem 4 in [15]), they show that finding a maximum acyclic matching in a given graph is hard in
general, and they explicitly pose the problem to describe a fast algorithm for the acyclic matching number in interval graphs.
In the present paper, we solve this problem for the more general chordal graphs. Furthermore, we study the edge coloring
notion corresponding to acyclic matchings.

Before we give exact definitions and discuss our results as well as related research, we introduce some terminology. We
consider finite, simple, and undirected graphs, and use standard notation. Amatching in a graph G is a subsetM of the edge
set E(G) of G such that no two edges inM are adjacent. Let V (M) be the set of vertices incident with an edge inM . A matching
M is induced [8] if the subgraph G[V (M)] of G induced by the set V (M) is 1-regular, that is, M is the edge set of G[V (M)].
Induced matching are also known as strong matchings. A matchingM is uniquely restricted [17] if there is no other matching
M ′ in G distinct from M that satisfies V (M) = V (M ′). It is easy to see that M is uniquely restricted if and only if there is
no M-alternating cycle in G, which is a cycle in G every second edge of which belongs to M [17]. Finally, M is acyclic [15] if
G[V (M)] is a forest. Let ν(G), νs(G), νur (G), and ν1(G) be the maximum sizes of a matching, an induced matching, a uniquely
restricted matching, and an acyclic matching in G, respectively. Since every induced matching is acyclic, and every acyclic
matching is uniquely restricted, we have

νs(G) ≤ ν1(G) ≤ νur (G) ≤ ν(G).

We chose the notation ‘‘ν1(G)’’ rather than something like ‘‘νac(G)’’, because we consider a further natural generalization.
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For a non-negative integer r , a graph G is r-degenerate if every subgraph H of G of order at least 1 has a vertex of degree at
most r in H . Note that a graph is a forest if and only if it is 1-degenerate. An r-degenerate order of a graph G is a linear order
u1, . . . , un of its vertices such that, for every i in [n], the vertex ui has degree at most r in G[{ui, . . . , un}], where [n] is the set
of the positive integers at most n. Clearly, a graph is r-degenerate if and only if it has an r-degenerate order.

Now, let a matchingM in a graph G be r-degenerate if the induced subgraph G[V (M)] is r-degenerate, and let νr (G) denote
the maximum size of an r-degenerate matching in G.

For every type of matching, there is a corresponding edge coloring notion. An edge coloring of a graph G is a partition of
its edge set into matchings. An edge coloring is induced (strong), uniquely restricted, and r-degenerate if each matching in the
partition has this property, respectively. Let χ ′(G), χ ′

s(G), χ
′
ur (G), and χ ′

r (G) be the minimum numbers of colors needed for
the corresponding colorings, respectively. Clearly,

χ ′

s(G) ≥ χ ′

1(G) ≥ χ ′

ur (G) ≥ χ ′(G).

In view of the hardness of the restricted matching notions, lower bounds on the matching numbers [18–21], upper bounds
on the chromatic indices [3,4], efficient algorithms for restricted graph classes [9–11,13,26], and approximation algorithms
have been studied [4,30]. There is only few research concerning acyclicmatchings; Panda and Pradhan [29] describe efficient
algorithms for chain graphs and bipartite permutation graphs.

Vizing’s [32] famous theorem says that the chromatic index χ ′(G) of G is either ∆(G) or ∆(G) + 1, where ∆(G) is the
maximum degree of G. Induced edge colorings have attracted much attention because of the conjecture χ ′

s(G) ≤
5
4∆(G)2

posed by Erdős and Nešetřil (cf. [12]). Building on earlier work of Molloy and Reed [28], Bruhn and Joos [7] showed
χ ′
s(G) ≤ 1.93∆(G)2 provided that ∆(G) is sufficiently large. In [4] it is shown that χ ′

ur (G) ≤ ∆(G)2 with equality if and
only if G is the complete bipartite graph K∆(G),∆(G).

Our results are upper bounds on χ ′
r (G) with the discussion of extremal graphs, and an efficient algorithm for νr (G) in

chordal graphs, solving the problem posed in [15].

2. Bounds on the r-degenerate chromatic index

Since, for every two positive integers r and∆, every r-degenerate matching of the complete bipartite graph K∆,∆ of order
2∆ has size at most r , we obtain χ ′

r (K∆,∆) ≥
∆2

r .
Our first result gives an upper bound in terms of r and ∆.

Theorem 1. If r is a positive integer and G is a graph of maximum degree at most ∆, then

χ ′

r (G) ≤
2(∆ − 1)2

r + 1
+ 2(∆ − 1) + 1. (1)

Proof. Let K =

⌊
2(∆−1)2

r+1 + 2(∆ − 1) + 1
⌋
. The proof is based on an inductive coloring argument. We may assume that all

but exactly one edge uv of G are colored using colors in [K ] such that, for every color α in [K ], the edges of G colored with α

form an r-degenerate matching. We consider the colors in [K ] that are forbidden by colors of the edges close to uv. In order
to complete the proof, we need to argue that there is always still some available color for uv in [K ].

Recall that NG(u) is the neighborhood {v ∈ V (G) : uv ∈ E(G)} of u in G, and that NG[u] is the closed neighborhood
{u} ∪ NG(u) of u in G.

We introduce some notation illustrated in Fig. 1. Let Nu = NG(u) \ NG[v], Nv = NG(v) \ NG[u], and Nu,v = NG(u) ∩ NG(v).
Let nu = |Nu|, nv = |Nv|, and nu,v = |Nu,v|. Clearly, nu + nu,v = dG(u) − 1 ≤ ∆ − 1 and nv + nu,v = dG(v) − 1 ≤ ∆ − 1. Let
Eu be the set of edges between u and Nu, Ev be the set of edges between v and Nv , Eu,v be the set of edges between {u, v} and
Nu,v , and, for every vertex w ∈ Nu ∪Nv ∪Nu,v , let Ew be the set of edges incident with w but not incident with u or v. Clearly,
|Eu| + |Ev| + |Eu,v| = (dG(u) − 1) + (dG(v) − 1) ≤ 2(∆ − 1) and |Ew| ≤ ∆ − 1 for every vertex w ∈ Nu ∪ Nv ∪ Nu,v .

LetF1 be the colors that appear on edges in Eu ∪Ev ∪Eu,v . Clearly, every color inF1 is forbidden for uv, because each color
class must be a matching. Let F2 be the colors α in [K ] that do not belong to F1 such that

dα
u + 2dα

u,v + dα
v ≥ r + 1,

where dα
u is the number of vertices in Nu incident with an edge colored α, dα

v is the number of vertices in Nv incident with
an edge colored α, and dα

u,v is the number of vertices in Nu,v incident with an edge colored α. Note that, since F1 and F2 are
disjoint, none of the edges contributing to dα

u + 2dα
u,v + dα

v is incident with u or v.
If there is some α in [K ] \ (F1 ∪F2), then neither u nor v is incident with an edge of color α, and dα

u + 2dα
u,v + dα

v ≤ r . This
implies min{dα

u + dα
u,v, d

α
v + dα

u,v} ≤ ⌊r/2⌋ ≤ r − 1 and max{dα
u + dα

u,v, d
α
v + dα

u,v} ≤ r . Hence, coloring uv with color α, the
vertices incident with the edges of G colored α induce an r-degenerate graph Gα . In fact, if dα

u + dα
u,v ≤ dα

v + dα
u,v , then u has

dα
u + dα

u,v + 1 ≤ r neighbors in Gα , and v has dα
u + dα

u,v + 1 ≤ r + 1 neighbors in Gα , one of which is u. Since Gα − {u, v} is
r-degenerate by assumption, it follows that Gα is r-degenerate.

As explained above this would complete the proof. Therefore, we may assume that F1 ∪ F2 = [K ].
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