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a b s t r a c t

John Tromp introduced the so-called ‘binary lambda calculus’ as a way to encode lambda
terms in terms of 0–1-strings using the de Bruijn representation along with a weighting
scheme. Later, Grygiel and Lescanne conjectured that the number of binary lambda terms
with m free indices and of size n (encoded as binary words of length n and according
to Tromp’s weights) is o (n−3/2τ−n) for τ ≈ 1.963448 . . .. We generalize the proposed
notion of size and show that for several classes of lambda terms, including binary lambda
terms with m free indices, the number of terms of size n is 2

(
n−3/2ρ−n

)
with some class

dependent constant ρ, which in particular disproves the above mentioned conjecture.
The methodology used is setting up the generating functions for the classes of lambda

terms. These are infinitely nested radicals which are investigated then by a singularity
analysis.

We show further how some properties of random lambda terms can be analyzed and
present a way to sample lambda terms uniformly at random in a very efficient way. This
allows to generate terms of size more than one million within a reasonable time, which is
significantly better than the samplers presented in the literature so far.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The objects of our interest are lambda terms, which are the basic objects of lambda calculus. For a thorough introduction
to lambda terms and lambda calculus we refer to [1]. This paper will not deal with lambda calculus and no understanding of
lambda calculus is needed to follow our proofs. Wewill instead be interested in the enumeration of lambda terms, the study
of some properties of random lambda terms and the efficient generation of terms of a given size uniformly at random.

A lambda term is a formal expression which is described by the grammar M ::= x | λx.M | (M M) where x is a variable,
the operation (M M) is called application, and using the quantifier λ is called abstraction. In a term of the form λx.M each
occurrence of x in M is called a bound variable. We say that a variable x is free in a term M if it is not in the scope of
any abstraction. A term with no free variables is called closed, otherwise open. Two terms are considered equivalent if
they are identical up to renaming of the variables, i.e., more formally speaking, they can be transformed into each other by
α-conversion. We shall always mean ‘equivalence class w.r.t. α-conversion’ whenever we write ‘lambda term’.

✩ A preliminary version of this work appeared in the proceedings of STACS 2016.
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In this paper we are interested in counting lambda terms whose size corresponds to their De Bruijn representation (i.e.,
what was called ‘nameless expressions’ in [10]).

Definition 1. A De Bruijn representation is a word described by the following specification:

M ::= n | λM |M M

where n is a positive integer, called a De Bruijn index. Each occurrence of a De Bruijn index is called a variable and each λ an
abstraction. A variable n of a De Bruijn representation w is bound if the prefix of w which has this variable as its last symbol
contains at least n times the symbol λ, otherwise it is free. The abstraction which binds a variable n is the nth λ before the
variable when parsing the De Bruijn representation from that variable n backwards to the first symbol.

For the purpose of the analysis we will use the notation consistent with the one used in [2]. This means that the variable
nwill be represented as a sequence of n symbols, namely as a string of n−1 so-called ‘successors’ S and a so-called ‘zero’ 0 at
the end. Obviously, there is a one to one correspondence between equivalence classes of closed lambda terms (as described
in the first paragraph) and De Bruijn representations. For instance, the De Bruijn representation of the lambda term λx.λy.xy
(which is e.g. equivalent to λa.λb.ab or λy.λx.yx) is λλ21; using the notation with successors this becomes λλ((S0)0).

Since we are interested in counting lambda terms of given size we have to specify what we mean by ‘size’: We use a
general notion of size which covers several previously studied models from the literature. The building blocks of lambda
terms, zeros, successors, abstractions and applications, contribute a, b, c and d, respectively, to the total size of a lambda
term. Formally, ifM and N are lambda terms, then

|0| = a, |Sn| = |n| + b, |λM| = |M| + c, |MN| = |M| + |N| + d.

Thus for the example given abovewe have |λλ((S0)0)| = 2a+b+2c+d. Assigning sizes to the symbols like above covers
several previously introduced notions of size:

• so called ‘natural counting’ (introduced in [2]) where a = b = c = d = 1,
• so called ‘less natural counting’ (introduced in [2]) where a = 0, b = c = 1, d = 2.
• binary lambda calculus (introduced in [35]) where b = 1, a = c = d = 2,

Assumption 1. Throughout the paper we will impose the following assumptions on the constants a, b, c, d:
1. a, b, c, d are nonnegative integers, 2. a + d ≥ 1, 3. b, c ≥ 1, 4. gcd(b, c, a + d) = 1.

If the zeros and the applications both had size 0 (i.e. a + d = 0), then we would have infinitely many terms of the
given size, because one could insert arbitrarily many applications and zeros into a term without increasing its size. If the
successors or the abstractions had size 0 (i.e. b or c equals to 0), then we would again have infinitely many terms of given
size, because one could insert arbitrarily long strings of successors or abstractions into a term without increasing its size.
The last assumption is more technical in its nature. It ensures that the generating function associated with the sequence of
the number of lambda terms will have exactly one singularity on the circle of convergence, which is on the positive real line.
The case of several singularities is not only technically more complicated, but it is for instance not even a priori clear which
singularities are important and which are negligible. So we cannot expect that it differs from the single singularity case only
by a multiplicative constant.

We mention that in [27] lambda terms with size function corresponding to a = b = 0 and c = d = 1 were considered,
but another restriction was imposed on the terms.

Historical remarks

Of course, the enumeration of combinatorial structures or the study of random structures is of interest in its own right.
However, there is rising interest in enumeration problems related to structures coming from logic. One of the first works in
such a direction were the investigation of random Boolean formulas [30,34,38] and the counting of finite models [39]. The
topic was resumed later, studying those random Boolean formulas under different aspects [8,11,20], analogous formulas
for other logical models [18,19,21], studying the number of tautologies [29] or the number of proofs in propositional
logic [13], comparing logical systems [22], comparing size notions of Boolean trees [14], or applying results in that domain
to satisfiability [23]. In [32] combinatorial enumeration of graphs was applied to study satisfiability problem and some
generalizations.

To our knowledge first enumerative investigation of lambda terms was performed in [12]. Later, particular classes of
lambda terms like linear and affine terms have been enumerated [6,25]. The random generation of terms was for instance
treated in [6,27]. Parts of these results have been extended tomore general classes of lambda terms [5]. Lambda terms related
to combinatory logic were studied in [3,35] where [3] also investigates the question on howmany normalizing lambda term
there are among all terms. As opposed to the above mentioned results, where lambda terms were interpreted as graphs and
their size is then the number of vertices of their graph representation, [35] introduced a size concept related to the De Bruijn
representation of lambda terms. The resulting enumeration problem is then different and also simpler when approaching it
with generating functions. The reason is there are much fewer terms of a given size than in the graph interpretation, making
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