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a b s t r a c t

We consider a problem of dispersing points on disjoint intervals on a line. Given n pairwise
disjoint intervals sorted on a line, we want to find a point in each interval such that the
minimum pairwise distance of these points is maximized. Based on a greedy strategy, we
present a linear time algorithm for the problem. Further, we also solve in linear time the
cycle version of the problem where the intervals are given on a cycle.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The problems of dispersing points have been extensively studied and can be classified to different categories by their
different constraints and objectives, e.g., [8,12,15,17,16,21]. In this paper, we consider problems of dispersing points on
intervals in linear domains including lines and cycles.

Let I be a set of n intervals on a line ℓ, and no two intervals of I intersect. The problem is to find a point in each interval
of I such that the minimum distance of any pair of points is maximized. We assume the intervals of I are given sorted on ℓ.
In this paper we present an O(n) time algorithm for this problem.

As an application of the problem, consider the following scenario. Suppose we are given n pairwise disjoint intervals on ℓ

and we want to build a facility on each interval. As the facilities can interfere with each other if they are too close (e.g., if the
facilities are hazardous), the goal is to choose locations for these facilities such that the minimum pairwise distance among
these facilities is minimized. Clearly, this is an instance of our problem.

We also consider the cycle version of the problemwhere the intervals of I are given on a cycle C. The intervals of I are also
pairwise disjoint and are given sorted cyclically on C. Note that the distance of two points on C is the length of the shorter
arc of C between the two points. By making use of our ‘‘line version’’ algorithm, we solve this cycle version problem in linear
time as well.

1.1. Related work

To the best of our knowledge, we have not found any previous work on the two problems studied in this paper. Our
problems essentially belong to a family of geometric dispersion problems, which are NP-hard in general in two and higher
dimensional space. For example, Baur and Fekete [1] studied the problems of distributing a number of points within a
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polygonal region such that the points are dispersed far away from each other, and they showed that the problems cannot be
approximated arbitrarily well in polynomial time, unless P= NP.

Wang and Kuo [21] considered the following two problems. Given a set S of points and a value d, find a largest subset
of S in which the distance of any two points is at least d. Given a set S of points and an integer k, find a subset of k points
of S to maximize the minimum distance of all pairs of points in the subset. It was shown in [21] that both problems in 2D
are NP-hard but can be solved efficiently in 1D. Refer to [2,7,9,10,14] for other geometric dispersion problems. Dispersion
problems in various non-geometric settings were also considered [8,12,15–17]. These problems are in general NP-hard;
approximation and heuristic algorithms were proposed for them.

On the other hand, problems on intervals usually have applications in other areas. For example, some problems on
intervals are related to scheduling because the time period between the release time and the deadline of a job or task in
scheduling problems can be considered as an interval on the line. From the interval point of view, Garey et al. [11] studied
the following problem on intervals: Given n intervals on a line, determine whether it is possible to find a unit-length sub-
interval in each input interval, such that these sub-intervals do not intersect. An O(n log n) time algorithm was given in [11]
for this problem. The optimization version of the above problemwas also studied [5,19], where the goal is to find amaximum
number of intervals that contain non-intersecting unit-length sub-intervals. Chrobak et al. [5] gave an O(n5) time algorithm
for the problem, and later Vakhania [19] improved the algorithm to O(n2 log n) time. The online version of the problem was
also considered [4]. Other optimization problems on intervals have also been considered, e.g., see [11,13,18,20].

Our problemmay also be related to some problems involving imprecise data. For example, Chambers et al. [3] studied the
problem of picking a point from each region (in a set of given geometric regions, e.g., disks) so that the longest edge length
of the geometric spanning tree of these points is minimized. Citovsky et al. [6] studied the problem of determining the order
of a set of regions so that the TSP tour connecting the points each chosen from a region by an adversary is minimized.

1.2. Our approach

For the line version of the problem, our algorithm is based on a greedy strategy. We consider the intervals of
I incrementally from left to right, and for each interval, we will ‘‘temporarily’’ determine a point in the interval. During
the algorithm, wemaintain a value dmin, which is the minimum pairwise distance of the ‘‘temporary’’ points that so far have
been computed. Initially, we put a point at the left endpoint of the first interval and set dmin = ∞. During the algorithm, the
value dmin will be monotonically decreasing. In general, when the next interval is considered, if it is possible to put a point in
the interval without decreasing dmin, then we put such a point as far left as possible. Otherwise, we put a point on the right
endpoint of the interval. In the latter case, we also need to adjust the points that have been determined temporarily in the
previous intervals that have been considered. We adjust these points in a greedy way such that dmin decreases the least. A
straightforward implementation of this approach can only give an O(n2) time algorithm. In order to achieve the O(n) time
performance, during the algorithm we maintain a ‘‘critical list’’ L of intervals, which is a subset of intervals that have been
considered. This list has some properties that help us implement the algorithm in O(n) time.

We should point out that our algorithm is fairly simple and easy to implement. In contrast, the rationale of the idea is
quite involved and it is not an easy task to argue its correctness. Indeed, discovering the critical list is the most challenging
work and it is the key idea for solving the problem in linear time.

To solve the cycle version, the main idea is to convert the problem to a problem instance on a line and then apply our
line version algorithm. More specifically, we make two copies of the intervals of I to a line and then apply our line version
algorithm on these 2n intervals on the line. The line version algorithm will find 2n points in these intervals and we show
that a particular subset of n consecutive points of them correspond to an optimal solution for the original problem on C.

In the following,wewill present our algorithms for the line version in Section 2. The cycle version is discussed in Section 3.
Section 4 concludes.

2. The line version

Let I = {I1, I2, . . . , In} be the set of intervals sorted from left to right on ℓ. For any two points of p and q on ℓ, we use |pq|
to denote their distance. Our goal is to find a point pi in Ii for each 1 ≤ i ≤ n, such that the minimum pairwise distance of
these points, i.e., min1≤i<j≤n|pipj|, is maximized.

For each interval Ii, 1 ≤ i ≤ n, we use li and ri to denote its left and right endpoints, respectively. We assume ℓ is the
x-axis. With a little abuse of notation, for any point p ∈ ℓ, depending on the context, p may also refer to its coordinate on ℓ.
Therefore, for each 1 ≤ i ≤ n, it is required that li ≤ pi ≤ ri.

For simplicity of discussion, we make a general position assumption that no two endpoints of the intervals of I have the
same location (our algorithm can be easily extended to the general case). Note that this implies li < ri for any interval Ii.

The rest of this section is organized as follows. In Section 2.1, we discuss some observations. In Section 2.2, we give an
overview of our algorithm. The details of the algorithm are presented in Section 2.3. Finally, we discuss the correctness and
analyze the running time in Section 2.4.
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