Simple linear-time algorithms for counting independent sets in distance-hereditary graphs

Min-Sheng Lin
Department of Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC

ARTICLE INFO

Article history:

Received 7 December 2016
Received in revised form 15 December 2017
Accepted 16 December 2017
Available online xxxx

Keywords:

Distance-hereditary graphs
Counting problem
Independent sets
Independent dominating sets
Independent perfect dominating sets
Linear-time algorithms

Abstract

A connected graph is distance-hereditary if any two vertices have the same distance in all of its connected induced subgraphs. This paper proposes a unified method for designing linear-time algorithms for counting independent sets and their two variants, independent dominating sets and independent perfect dominating sets, in distance-hereditary graphs. © 2017 Elsevier B.V. All rights reserved.

1. Introduction

A connected graph is a distance-hereditary graph if and only if the distance between any two vertices in all of its connected induced subgraphs is the same as in the original graph; alternatively, all induced paths in a distance-hereditary graph are isometric. Howorka [11] first developed distance-hereditary graphs, which have been studied extensively [1,10,9]. Studies of distance-hereditary graphs are motivated by the fact that several graph problems can be efficiently solved for distancehereditary graphs. Numerous studies of decision problems and optimization problems for distance-hereditary graphs have been published [2,8,3,5,6,12,18,4], but few had addressed counting problems. This paper focuses on solving the problems of counting independent sets, independent dominating sets, and independent perfect dominating sets in a distance-hereditary graph.

Let $G=(V, E)$ be a graph with set of vertices V and set of edges E. An independent set (IS) in G is a subset D of V such that no two vertices of D are mutually adjacent. A dominating set in G is a subset D of V such that every vertex that is not in D is adjacent to at least one vertex in D. An independent dominating set (IDS) in G is a set of vertices of G that is both independent and dominating in G. An independent dominating set D is an independent perfect dominating set (IPDS) (or an efficient dominating set) if every vertex that is not in D is adjacent to exactly one vertex in D. Let $I S(G)$, $\operatorname{IDS}(G)$, and $I P D S(G)$ be the collections of all ISs, IDSs, and IPDSs in G, respectively. Then, the inclusions $\operatorname{IPDS}(G) \subseteq \operatorname{IDS}(G) \subseteq \operatorname{IS}(G)$ hold by definition.

Provan and Ball [20] confirmed that counting ISs is a \#P-complete problem for general graphs and remains so even for bipartite graphs. Okamoto et al. [19] demonstrated that the problem of counting MISs is \#P-complete for chordal graphs. Lin and Chen [15] showed that counting IPDSs remains a \#P-complete problem for chordal graphs. Valiant [21] defined the class of \#P problems as those that involve counting access computations for problems in NP; the class of \#P-complete problems includes the hardest problems in \#P. As is widely known, all exact algorithms for solving \#P-complete problems have exponential time complexity so efficient exact algorithms for this class of problems are unlikely to exist. However, this

[^0]complexity can be reduced by considering a restricted subclass of \#P-complete problems. Some polynomial-time or lineartime algorithms for counting ISs, IDSs, or IPDSs have been found for interval graphs [13], chordal graphs [19], trapezoid graphs [14], tolerance graphs [17], triad convex bipartite graphs [15], and rooted directed path graphs [16].

The rest of this paper is organized as follows. Section 2 introduces basic definitions and notation that are used in the later sections and reviews some properties of distance-hereditary graphs. Sections 3, 4 and 5 present linear-time algorithms to count ISs, IDS, and IPDS, respectively, in a distance-hereditary graph. Finally, Section 6 provides concluding remarks.

2. Preliminary

This section presents the preliminaries on which the desired algorithms depend. Suppose $G=(V, E)$ is a graph with set of vertices V and set of edges E. Let $N(v)$ represent the neighborhood of a vertex v in G and $N[v]=\{v\} \cup N(v)$ represent the closed neighborhood of a vertex v in G. Vertices u and v are called false twins if $N(u)=N(v)$ and true twins if $N[u]=N[v]$. A pendant vertex is a vertex with exactly a single neighbor. Let $G[X]$ denote the subgraph of G that is induced by $X \subseteq V$.

An ordering $v_{1}<v_{2}<\cdots<v_{n}$ of V is called a one-vertex-extension ordering of G if v_{i} is a pendant vertex that is attached to, or is a (true or false) twin of, some other vertex in $G\left[V_{i}\right]$ for $2 \leq i \leq n$, where $V_{i}=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ and n is the number of vertices in G. It is well known that a graph is distance-hereditary if and only if it has a one-vertex-extension ordering [1,10].

Chang et al. [4] introduced the one-vertex-extension tree based on one-vertex-extension ordering. Given a one-vertexextension ordering $v_{1}<v_{2}<\cdots<v_{n}$ of a distance-hereditary graph G, the one-vertex-extension tree, denoted by $E T(G)$, is obtained as follows. First, let v_{1} be the root of $E T(G)$. Next, nodes are added to $E T(G)$ from v_{2} to v_{n}. For each $2 \leq j \leq n$, by one-vertex-extension ordering, either vertex v_{j} is a pendant vertex that is attached to vertex v_{i} or vertices v_{j} and v_{i} are (true or false) twins in $G\left[V_{j}\right]$ for some vertex v_{i} with $i<j$. Now, let v_{j} be the child of node v_{i} in $E T(G)$. Finally, assume that the ordering of children of a node from left to right in $E T(G)$ is the same as the one-vertex-extension ordering of V. Let $\left[v_{i}, v_{j}\right]$ denote an edge of $E T(G)$, where v_{i} is the parent of v_{j}. An edge $\left[v_{i}, v_{j}\right]$ is called a Pedge in $E T(G)$ if v_{j} is a pendant vertex that is attached to v_{i} in $G\left[V_{j}\right]$. An edge [v_{i}, v_{j}] is called a T edge or F edge in $E T(G)$ if v_{i} and v_{j} are true twins or false twins in $G\left[V_{j}\right]$, respectively. Fig. 1 presents an example of a distance-hereditary graph and its one-vertex-extension tree.

Let $E T(i)$ denote the subtree of $E T(G)$ that is rooted at v_{i}, and let $V(i)$ be the set of all nodes in $E T(i)$. The twin set of node v_{i}, denoted by $T S(i)$, is the set of nodes in $E T(G)$ that contains v_{i} itself and all descendants v_{j} of v_{i} such that all edges of the path that connects v_{i} with v_{j} in $E T(G)$ are T edges or F edges.

Suppose that v_{i} is an internal node in $E T(G)$ whose children ordered from left to right are $v_{h 1}, v_{h 2}, \ldots, v_{h k}$. Then, let $E T$ $\left(i, h_{j}\right)$ be a subtree of $E T(G)$ that is induced by $v_{i}, V\left(h_{j}\right), V\left(h_{j+1}\right), \ldots$, and $V\left(h_{k}\right)$. Let $V\left(i, h_{j}\right)$ be the set of all nodes in $E T\left(i, h_{j}\right)$ and $T S\left(i, h_{j}\right)=T S(i) \cap V\left(i, h_{j}\right)$.

Suppose that $\left[v_{i}, v_{j}\right]$ is an edge in $E T(G)$. To simplify the notation, the rest of this paper will use $v_{j^{*}}$ to refer to the child of v_{i} right next to v_{j} in $E T(G)$. Notably, if v_{j} is the rightmost child of v_{i}, then $T S\left(i, j^{*}\right)$ contains only one node, v_{i}.

According to the above definitions, the following remarks are easily verified.
Remark 1. Let $\left[v_{i}, v_{j}\right]$ be an edge in $E T(G)$. The vertex set $V(i, j)$ can be partitioned into two disjoint subsets $V\left(i, j^{*}\right)$ and $V(j)$, and successively partitioned into four disjoint sets $T S\left(i, j^{*}\right), V\left(i, j^{*}\right) \backslash T S\left(i, j^{*}\right), T S(j)$, and $V(j) \backslash T S(j)$.

Remark 2. If $\left[v_{i}, v_{j}\right]$ is a T or F edge in $E T(G)$, then $T S(i, j)$ is the disjoint union of $T S\left(i, j^{*}\right)$ and $T S(j)$. If $\left[v_{i}, v_{j}\right]$ is a P edge in $E T(G)$, then $T S(i, j)=T S\left(i, j^{*}\right)$.

Let X and Y represent two disjoint subsets of vertices in a graph G. X and Y are said to form a join in G if every vertex of X is adjacent to any vertex of Y in G. X and Y are said to be separated in G if no vertex of X is adjacent to any vertex of Y in G.

Lemma 1 ([4]). Suppose that $\left[v_{i}, v_{j}\right]$ is a P or T edge in $E T(G) . T S(j)$ and $T S\left(i, j^{*}\right)$ form a join in G.
Lemma 2 ([4]). Suppose that $\left[v_{i}, v_{j}\right]$ is an F edge in $E T(G) . V(j)$ and $V\left(i, j^{*}\right)$ are separated in G.
Lemma $3([18,4])$. Suppose that $\left[v_{i}, v_{j}\right]$ is an edge in $E T(G) . V(j)$ and $V\left(i, j^{*}\right) \backslash T S\left(i, j^{*}\right)$ are separated in G, and $V\left(i, j^{*}\right)$ and $V(j) \backslash T S(j)$ are separated in G.

The following notation will be used in the rest of this paper. Let $X \biguplus Y$ denote the disjoint union of two sets X and Y. Given two collections of sets A and B, the operation \otimes is defined by $A \otimes B=\{X \cup Y: X \in A, Y \in B\}$. Clearly, if for each $X \in A$ and each $Y \in B, X$ and Y are disjoint, then $|A \otimes B|=|A| \times|B|$. To prove Lemmas 4-12, given an IS S in $G[V(i, j)]$, let $S_{1}=S \cap V$ $\left(i, j^{*}\right)$ and $S_{2}=S \cap V(j)$. Clearly, by Remark $1, S_{1}$ and S_{2} form a partition of S. That is, $S=S_{1} \biguplus S_{2}$.

3. Counting independent sets in a distance-hereditary graph

This section provides a linear-time algorithm for counting ISs in a distance-hereditary graph. First, the four collections of ISs that are used to derive the main algorithm are defined as follows. Suppose that v_{i} is a node in $E T(G)$. Define the following.
$I S_{a}(i)$: collection of all ISs S of $G[V(i)]$ such that $S \cap T S(i) \neq \varnothing$.
$I S_{b}(i):$ collection of all ISs S of $G[V(i)]$ such that $S \cap T S(i)=\varnothing$.

https://daneshyari.com/en/article/6871360

Download Persian Version:
https://daneshyari.com/article/6871360

Daneshyari.com

[^0]: E-mail address: mslin@ee.ntut.edu.tw.

