
Please cite this article in press as: M. Lin, Simple linear-time algorithms for counting independent sets in distance-hereditary graphs, Discrete Applied
Mathematics (2018), https://doi.org/10.1016/j.dam.2017.12.023.

Discrete Applied Mathematics () –

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Simple linear-time algorithms for counting independent sets
in distance-hereditary graphs
Min-Sheng Lin
Department of Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 7 December 2016
Received in revised form 15 December 2017
Accepted 16 December 2017
Available online xxxx

Keywords:
Distance-hereditary graphs
Counting problem
Independent sets
Independent dominating sets
Independent perfect dominating sets
Linear-time algorithms

a b s t r a c t

A connected graph is distance-hereditary if any two vertices have the same distance in all
of its connected induced subgraphs. This paper proposes a unified method for designing
linear-time algorithms for counting independent sets and their two variants, independent
dominating sets and independent perfect dominating sets, in distance-hereditary graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A connected graph is a distance-hereditary graph if and only if the distance between any twovertices in all of its connected
induced subgraphs is the same as in the original graph; alternatively, all induced paths in a distance-hereditary graph are
isometric. Howorka [11] first developed distance-hereditary graphs, which have been studied extensively [1,10,9]. Studies
of distance-hereditary graphs are motivated by the fact that several graph problems can be efficiently solved for distance-
hereditary graphs. Numerous studies of decision problems and optimization problems for distance-hereditary graphs have
been published [2,8,3,5,6,12,18,4], but few had addressed counting problems. This paper focuses on solving the problems of
counting independent sets, independent dominating sets, and independent perfect dominating sets in a distance-hereditary
graph.

Let G = (V , E) be a graph with set of vertices V and set of edges E. An independent set (IS) in G is a subset D of V such
that no two vertices of D are mutually adjacent. A dominating set in G is a subset D of V such that every vertex that is not
in D is adjacent to at least one vertex in D. An independent dominating set (IDS) in G is a set of vertices of G that is both
independent and dominating in G. An independent dominating set D is an independent perfect dominating set (IPDS) (or an
efficient dominating set) if every vertex that is not inD is adjacent to exactly one vertex inD. Let IS(G), IDS(G), and IPDS(G) be
the collections of all ISs, IDSs, and IPDSs in G, respectively. Then, the inclusions IPDS(G) ⊆ IDS(G) ⊆ IS(G) hold by definition.

Provan and Ball [20] confirmed that counting ISs is a #P-complete problem for general graphs and remains so even for
bipartite graphs. Okamoto et al. [19] demonstrated that the problem of counting MISs is #P-complete for chordal graphs.
Lin and Chen [15] showed that counting IPDSs remains a #P-complete problem for chordal graphs. Valiant [21] defined
the class of #P problems as those that involve counting access computations for problems in NP; the class of #P-complete
problems includes the hardest problems in #P. As is widely known, all exact algorithms for solving #P-complete problems
have exponential time complexity so efficient exact algorithms for this class of problems are unlikely to exist. However, this

E-mail address:mslin@ee.ntut.edu.tw.

https://doi.org/10.1016/j.dam.2017.12.023
0166-218X/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2017.12.023
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:mslin@ee.ntut.edu.tw
https://doi.org/10.1016/j.dam.2017.12.023

Please cite this article in press as: M. Lin, Simple linear-time algorithms for counting independent sets in distance-hereditary graphs, Discrete Applied
Mathematics (2018), https://doi.org/10.1016/j.dam.2017.12.023.

2 M. Lin / Discrete Applied Mathematics () –

complexity can be reduced by considering a restricted subclass of #P-complete problems. Some polynomial-time or linear-
time algorithms for counting ISs, IDSs, or IPDSs have been found for interval graphs [13], chordal graphs [19], trapezoid
graphs [14], tolerance graphs [17], triad convex bipartite graphs [15], and rooted directed path graphs [16].

The rest of this paper is organized as follows. Section 2 introduces basic definitions and notation that are used in the later
sections and reviews some properties of distance-hereditary graphs. Sections 3, 4 and 5 present linear-time algorithms to
count ISs, IDS, and IPDS, respectively, in a distance-hereditary graph. Finally, Section 6 provides concluding remarks.

2. Preliminary

This section presents the preliminaries on which the desired algorithms depend. Suppose G = (V , E) is a graph with set
of vertices V and set of edges E. Let N(v) represent the neighborhood of a vertex v in G and N[v] = {v} ∪ N(v) represent the
closed neighborhood of a vertex v in G. Vertices u and v are called false twins if N(u) = N(v) and true twins if N[u] = N[v]. A
pendant vertex is a vertex with exactly a single neighbor. Let G [X] denote the subgraph of G that is induced by X ⊆ V .

An ordering v1 < v2 < · · · < vn of V is called a one-vertex-extension ordering of G if vi is a pendant vertex that is attached
to, or is a (true or false) twin of, some other vertex in G[Vi] for 2 ≤ i ≤ n, where Vi = {v1, v2, . . . , vi} and n is the number of
vertices in G. It is well known that a graph is distance-hereditary if and only if it has a one-vertex-extension ordering [1,10].

Chang et al. [4] introduced the one-vertex-extension tree based on one-vertex-extension ordering. Given a one-vertex-
extension ordering v1 < v2 < · · · < vn of a distance-hereditary graph G, the one-vertex-extension tree, denoted by ET (G), is
obtained as follows. First, let v1 be the root of ET (G). Next, nodes are added to ET (G) from v2 to vn. For each 2 ≤ j ≤ n, by
one-vertex-extension ordering, either vertex vj is a pendant vertex that is attached to vertex vi or vertices vj and vi are (true
or false) twins in G[Vj] for some vertex vi with i < j. Now, let vj be the child of node vi in ET (G). Finally, assume that the
ordering of children of a node from left to right in ET (G) is the same as the one-vertex-extension ordering of V . Let [vi, vj]
denote an edge of ET (G), where vi is the parent of vj. An edge [vi, vj] is called a P edge in ET (G) if vj is a pendant vertex that
is attached to vi in G[Vj]. An edge [vi, vj] is called a T edge or F edge in ET (G) if vi and vj are true twins or false twins in G[Vj],
respectively. Fig. 1 presents an example of a distance-hereditary graph and its one-vertex-extension tree.

Let ET (i) denote the subtree of ET (G) that is rooted at vi, and let V (i) be the set of all nodes in ET (i). The twin set of node
vi, denoted by TS(i), is the set of nodes in ET (G) that contains vi itself and all descendants vj of vi such that all edges of the
path that connects vi with vj in ET (G) are T edges or F edges.

Suppose that vi is an internal node in ET (G) whose children ordered from left to right are vh1, vh2, . . . , vhk. Then, let ET
(i, hj) be a subtree of ET (G) that is induced by vi, V (hj), V (hj+1), . . . , and V (hk). Let V (i, hj) be the set of all nodes in ET (i, hj)
and TS(i, hj) = TS(i) ∩ V (i, hj).

Suppose that [vi, vj] is an edge in ET (G). To simplify the notation, the rest of this paper will use vj∗ to refer to the child of
vi right next to vj in ET (G). Notably, if vj is the rightmost child of vi, then TS(i, j∗) contains only one node, vi.

According to the above definitions, the following remarks are easily verified.

Remark 1. Let [vi, vj] be an edge in ET (G). The vertex set V (i, j) can be partitioned into two disjoint subsets V (i, j∗) and V (j),
and successively partitioned into four disjoint sets TS(i, j∗), V (i, j∗) \ TS(i, j∗), TS(j), and V (j) \ TS(j).

Remark 2. If [vi, vj] is a T or F edge in ET (G), then TS(i, j) is the disjoint union of TS(i, j∗) and TS(j). If [vi, vj] is a P edge in
ET (G), then TS(i, j) = TS(i, j∗).

Let X and Y represent two disjoint subsets of vertices in a graph G. X and Y are said to form a join in G if every vertex of X
is adjacent to any vertex of Y in G. X and Y are said to be separated in G if no vertex of X is adjacent to any vertex of Y in G.

Lemma 1 ([4]). Suppose that [vi, vj] is a P or T edge in ET (G). TS(j) and TS(i, j∗) form a join in G.

Lemma 2 ([4]). Suppose that [vi, vj] is an F edge in ET (G). V (j) and V (i, j∗) are separated in G.

Lemma 3 ([18,4]). Suppose that [vi, vj] is an edge in ET (G). V (j) and V (i, j∗) \ TS(i, j∗) are separated in G, and V (i, j∗) and
V (j) \ TS(j) are separated in G.

The following notationwill be used in the rest of this paper. Let X
⨄

Y denote the disjoint union of two sets X and Y . Given
two collections of sets A and B, the operation ⊗ is defined by A ⊗ B = {X ∪ Y : X ∈ A, Y ∈ B}. Clearly, if for each X ∈ A and
each Y ∈ B, X and Y are disjoint, then |A ⊗ B| = |A| × |B|. To prove Lemmas 4–12, given an IS S in G[V (i, j)], let S1 = S ∩ V
(i, j∗) and S2 = S ∩ V (j). Clearly, by Remark 1, S1 and S2 form a partition of S. That is, S = S1

⨄
S2.

3. Counting independent sets in a distance-hereditary graph

This section provides a linear-time algorithm for counting ISs in a distance-hereditary graph. First, the four collections of
ISs that are used to derive themain algorithm are defined as follows. Suppose that vi is a node in ET (G). Define the following.

ISa(i) : collection of all ISs S of G[V (i)] such that S ∩ TS(i) ̸= ∅.
ISb(i) : collection of all ISs S of G[V (i)] such that S ∩ TS(i) = ∅.

Download English Version:

https://daneshyari.com/en/article/6871360

Download Persian Version:

https://daneshyari.com/article/6871360

Daneshyari.com

https://daneshyari.com/en/article/6871360
https://daneshyari.com/article/6871360
https://daneshyari.com

