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1. Introduction

A connected graph is a distance-hereditary graph if and only if the distance between any two vertices in all of its connected
induced subgraphs is the same as in the original graph; alternatively, all induced paths in a distance-hereditary graph are
isometric. Howorka [11] first developed distance-hereditary graphs, which have been studied extensively [1,10,9]. Studies
of distance-hereditary graphs are motivated by the fact that several graph problems can be efficiently solved for distance-
hereditary graphs. Numerous studies of decision problems and optimization problems for distance-hereditary graphs have
been published [2,8,3,5,6,12,18,4], but few had addressed counting problems. This paper focuses on solving the problems of
counting independent sets, independent dominating sets, and independent perfect dominating sets in a distance-hereditary
graph.

Let G = (V, E) be a graph with set of vertices V and set of edges E. An independent set (IS) in G is a subset D of V such
that no two vertices of D are mutually adjacent. A dominating set in G is a subset D of V such that every vertex that is not
in D is adjacent to at least one vertex in D. An independent dominating set (IDS) in G is a set of vertices of G that is both
independent and dominating in G. An independent dominating set D is an independent perfect dominating set (IPDS) (or an
efficient dominating set) if every vertex that is not in D is adjacent to exactly one vertex in D. Let IS(G), IDS(G), and IPDS(G) be
the collections of all ISs, IDSs, and IPDSs in G, respectively. Then, the inclusions IPDS(G) C IDS(G) C IS(G) hold by definition.

Provan and Ball [20] confirmed that counting ISs is a #P-complete problem for general graphs and remains so even for
bipartite graphs. Okamoto et al. [19] demonstrated that the problem of counting MISs is #P-complete for chordal graphs.
Lin and Chen [15] showed that counting IPDSs remains a #P-complete problem for chordal graphs. Valiant [21] defined
the class of #P problems as those that involve counting access computations for problems in NP; the class of #P-complete
problems includes the hardest problems in #P. As is widely known, all exact algorithms for solving #P-complete problems
have exponential time complexity so efficient exact algorithms for this class of problems are unlikely to exist. However, this
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complexity can be reduced by considering a restricted subclass of #P-complete problems. Some polynomial-time or linear-
time algorithms for counting ISs, IDSs, or IPDSs have been found for interval graphs [13], chordal graphs [19], trapezoid
graphs [14], tolerance graphs [17], triad convex bipartite graphs [15], and rooted directed path graphs [16].

The rest of this paper is organized as follows. Section 2 introduces basic definitions and notation that are used in the later
sections and reviews some properties of distance-hereditary graphs. Sections 3, 4 and 5 present linear-time algorithms to
count ISs, IDS, and IPDS, respectively, in a distance-hereditary graph. Finally, Section 6 provides concluding remarks.

2. Preliminary

This section presents the preliminaries on which the desired algorithms depend. Suppose G = (V, E) is a graph with set
of vertices V and set of edges E. Let N(v) represent the neighborhood of a vertex v in G and N[v] = {v} U N(v) represent the
closed neighborhood of a vertex v in G. Vertices u and v are called false twins if N(u) = N(v) and true twins if N[u] = N[v]. A
pendant vertex is a vertex with exactly a single neighbor. Let G [X] denote the subgraph of G that is induced by X C V.

Anordering v; < v, < --- < v, of V is called a one-vertex-extension ordering of G if v; is a pendant vertex that is attached
to, or is a (true or false) twin of, some other vertex in G[V;] for 2 < i < n, where V; = {vq, v, ..., v;} and n is the number of
vertices in G. It is well known that a graph is distance-hereditary if and only if it has a one-vertex-extension ordering [1,10].

Chang et al. [4] introduced the one-vertex-extension tree based on one-vertex-extension ordering. Given a one-vertex-
extension ordering v; < v, < --- < v, of a distance-hereditary graph G, the one-vertex-extension tree, denoted by ET(G), is
obtained as follows. First, let vy be the root of ET(G). Next, nodes are added to ET(G) from v, to v,. Foreach2 < j < n, by
one-vertex-extension ordering, either vertex v; is a pendant vertex that is attached to vertex v; or vertices v; and v; are (true
or false) twins in G[V;] for some vertex v; with i < j. Now, let v; be the child of node v; in ET(G). Finally, assume that the
ordering of children of a node from left to right in ET(G) is the same as the one-vertex-extension ordering of V. Let [v;, vj]
denote an edge of ET(G), where v; is the parent of v;. An edge [v;, vj] is called a P edge in ET(G) if vj is a pendant vertex that
is attached to v; in G[V;]. An edge [v;, vj] is called a T edge or F edge in ET(G) if v; and vj are true twins or false twins in G[V;],
respectively. Fig. 1 presents an example of a distance-hereditary graph and its one-vertex-extension tree.

Let ET(i) denote the subtree of ET(G) that is rooted at v;, and let V(i) be the set of all nodes in ET(i). The twin set of node
v;, denoted by TS(i), is the set of nodes in ET(G) that contains v; itself and all descendants v; of v; such that all edges of the
path that connects v; with v; in ET(G) are T edges or F edges.

Suppose that v; is an internal node in ET(G) whose children ordered from left to right are vy1, vp2, ..., vpe. Then, let ET
(i, hj) be a subtree of ET(G) that is induced by v;, V (h;), V (hjt1), ...,and V (hi). Let V (i, h;) be the set of all nodes in ET (i, h;)
and TS(i, h;) = TS(i) N V(i, hj).

Suppose that [v;, v;] is an edge in ET(G). To simplify the notation, the rest of this paper will use v;« to refer to the child of
v; right next to v; in ET(G). Notably, if vj is the rightmost child of v;, then TS(i, j*) contains only one node, v;.

According to the above definitions, the following remarks are easily verified.

Remark 1. Let [v;, v;] be an edge in ET(G). The vertex set V(i, j) can be partitioned into two disjoint subsets V(i, j*) and V(j),
and successively partitioned into four disjoint sets TS(i, j*), V(i, j*) \ TS(i, j*), TS(j), and V(j) \ TS(j).

Remark 2. If [v;, vj] is a T or F edge in ET(G), then TS(i, j) is the disjoint union of TS(i, j*) and TS(j). If [v;, v;] is a P edge in
ET(G), then TS(i, j) = TS(i, j*).

Let X and Y represent two disjoint subsets of vertices in a graph G. X and Y are said to form a join in G if every vertex of X
is adjacent to any vertex of Y in G. X and Y are said to be separated in G if no vertex of X is adjacent to any vertex of Y in G.

Lemma 1 ([4]). Suppose that [v;, vj] is a P or T edge in ET(G). TS(j) and TS(i, j*) form a join in G.
Lemma 2 ([4]). Suppose that [v;, v;] is an F edge in ET(G). V(j) and V (i, j*) are separated in G.

Lemma 3 ([18,4]). Suppose that [v;, v;] is an edge in ET(G). V(j) and V (i, j*) \ TS(i, j*) are separated in G, and V (i, j*) and
V(j) \ TS(j) are separated in G.

The following notation will be used in the rest of this paper. Let X +] Y denote the disjoint union of two sets X and Y. Given
two collections of sets A and B, the operation ® is defined by AQ B={XUY : X € A, Y € B}. Clearly, if for each X € A and
eachY € B, X and Y are disjoint, then |A ® B| = |A| x |B|. To prove Lemmas 4-12, given an IS S in G[V(i, j)], letS; =SNV
(i,7%)and S, = S N V(j). Clearly, by Remark 1, S; and S, form a partition of S. That is, S = S; [4) S».

3. Counting independent sets in a distance-hereditary graph

This section provides a linear-time algorithm for counting ISs in a distance-hereditary graph. First, the four collections of
ISs that are used to derive the main algorithm are defined as follows. Suppose that v; is a node in ET(G). Define the following.

ISq4(i) : collection of all ISs S of G[V/(i)] such that S N TS(i) # @.
ISp(i) : collection of all ISs S of G[V(i)] such that S N TS(i) = @.
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