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a b s t r a c t

In a recent paper Lopez-de-los-Mozos et al. (2013), an algorithmic approachwas presented
for the robust (minmax regret) absolute deviation single-facility location problem on
networks with node weights which are linear functions of an uncertain or dynamically
changing parameter. The problem combines the mean absolute deviation criterion, which
is theweighted average of the absolute deviations of individual customer–facility distances
from the mean customer–facility distance and is one of the standard measures of ‘‘in-
equality’’ between the customers, with theminmax regret approach to optimization under
uncertainty. The uncertain data are node weights (demands) which are assumed to change
in a correlated manner being linear functions of a single uncertain parameter. The analysis
in Lopez-de-los-Mozos et al. (2013) presented complexity bounds that are polynomial but
too high to be of practical value. In this note, we present improvements of the analysis that
significantly reduce the computational complexity bounds for the algorithm.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last two decades, much attention has been focused on the minmax regret approach to optimization problems
with data uncertainty (e.g., [2,3]), where it is required to find a solution with an objective function value reasonably close
to the optimal one for all possible realizations of uncertain parameters. The literature on minmax regret facility location
largely focuses on minmax regret versions of classical location objectives such as the median or center objectives. In [4], the
minmax regret version of a location problemwith an equity-based objective was considered. Themean absolute deviation is
the weighted average of the absolute deviations of customer–facility distances from the mean distance between the facility
and the customers, and is a measure of ‘‘inequality’’ between the customers. Lopez-de-los-Mozos et al. [4] consider this
objective in the context of dynamic evolution (or linearly-correlated uncertainty) of node weights which are assumed to
be linear functions of a changing parameter (time, for instance), and study the minmax and minmax regret versions of the
problem. For the minmax regret version, they develop a polynomial time algorithm, which, in spite of being polynomial,
cannot be considered practically useful due to very high order of complexity obtained by the analysis in [4] (slightly higher
than O(n8 log n) for trees and slightly higher than O(m3n8 log n) for general networks, where n and m are the numbers of
vertices and edges, respectively). In this paper, we present improvements of the analysis that reduce the complexity bounds
to O(m2n3(log∗n)2 log n) for general networks, O(n4(log∗n)2 log n) for trees, and O(n3(log∗n)2 log n) for paths, where log∗n is
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the iterated logarithm which is a function that grows extremely slowly and can be considered as a constant for practical
purposes.

To comply with space requirements of a note, we keep the presentation compact and technical. An expanded version of
this paper, with additional intuitive explanations, is available in [1].

2. Notation and the problem

Consider a network N(V , E) with the set of nodes V = {v1, . . . , vn} and the set E of m rectifiable edges. We denote by le
the length of the edge e ∈ E, by N the set of all points of the network, or the network itself, and by d(x, y) the shortest-path
distance in the network between points x and y. We also use the following notation (consistent with [4]):

• wi(t) = αit+βi ≥ 0 is the weight of node vi which is a linear function of a real-valued parameter t (time, for instance)
that can take any value from an interval [t−, t+], for some constants t−, t+, t− ≤ t+;

• W (t) =
∑n

i=1wi(t) = At + B, where A =
∑n

i=1αi, B =
∑n

i=1βi, is the total weight, which is assumed to be strictly
positive for any t ∈ [t−, t+];

• M(x, t) =
1

W (t)

∑n
i=1wi(t)d(vi, x) is the dynamic median function, for t ∈ [t−, t+] and x ∈ N;

• F (x, t) =
1

W (t)

∑n
i=1wi(t)|d(vi, x) − M(x, t)| is the dynamic mean absolute deviation (MAD) function;

• F∗(t) = minx∈NF (x, t).

Following [4], the minmax regret mean absolute deviation location problem (MMR-MAD) is

min
x∈N

max
t∈[t−,t+]

(
F (x, t) − F∗(t)

)
.

MMR-MAD is the minmax regret version of the problem of finding a location x that minimizes the mean absolute deviation
F (x, t) considering t as uncertain parameter that can take values in [t−, t+].

For any integer i, j, i ≤ j, let [i : j] denote the set {i, i + 1, . . . , j}. For the interpretation of the standard notation log∗n,
λs(n) and α(n) from computational geometry and some related facts that we use for complexity estimation, see Appendix.

Lopez-de-los-Mozos et al. [4] present an algorithm for MMR-MAD and analyze its complexity. Their analysis obtains the
complexity bound O(mn3λ6(m2n5)log∗n log n) (even though stated as O(mn3λ6(n5)log∗n log n) in [4], as we will discuss in
Section 5) for general networks, which is slightly higher than O(m3n8 log n), and the bound O(n3λ6(n5)log∗n log n) for trees
which is slightly higher thanO(n8 log n). These orders of complexity, although polynomial, are clearly of little practical value,
and the purpose of this paper is to improve them.

To facilitate reading the paper, in the next section we give an informal sketch of the approach of [4] with minimum
notation and details. The purpose of this is to outline a ‘‘big picture’’ and some ideas without delving into technicalities. For
further details and explanations we refer the reader to [4] or to our more detailed description of the algorithm and analysis
of [4] in [1]. In Sections 4 and 5 we present our improvements. In Section 6, we make some concluding remarks.

3. A sketch of the ideas of the approach of [4]

The logic of the algorithm from [4] forMMR-MAD is essentially the same for a tree and for a general network. On a tree, the
problem restricted to a single edge is considered; on a general network, each edge is partitioned into O(n) primary regions
where all functions d(vi, x), i ∈ [1 : n] are linear, and the problem restricted to a primary region of an edge is considered.
Then the best of the optimal solutions for different edges/primary regions is chosen.

Suppose that N is a tree. Consider the function F (x, t) in the domain De which is the Cartesian product of an edge e of the
treeN and the interval [t−, t+]. In the interior ofDe, function F (x, t) is differentiable everywhere except the points of at most
n breakpoint curves Be,i, i ∈ [1 : n] that satisfy d(vi, x) − M(x, t) = 0. The breakpoint curves are hyperbolas or straight lines
and partition the domain De into full-dimensional cells inside which F (x, t) is differentiable. This partition has O(n2) cells
and O(n2) vertices (intersection points of the breakpoint curves with other breakpoint curves or the boundary of De) and is
denoted P(De). In the paper, we use the term ‘‘vertices’’ for vertices of geometric arrangements, while the term ‘‘nodes’’ is
used for the nodes of N .

In Phase 1 of the algorithm from [4], function F∗(t) is obtained. For any fixed t ∈ [t−, t+] the minimum of F (x, t) over all
x ∈ N is attained at some breakpoint curve or at a node of N , since F (x, t) as a function of x is piece-wise linear convex on
ewith breakpoints at the breakpoint curves. Hence, for obtaining the function F∗(t), function F (x, t) needs to be considered
only for the points (x, t) of the breakpoint curves or points that correspond to x ∈ V .

The t-coordinates of all vertices of all partitions P(De), e ∈ E partition the interval [t−, t+] into O(n3) basic subintervals.
When (x, t)moves along a breakpoint curveBe,i, F (x, t) can be viewed as a function of only t which has an analytic expression
(quotient of two polynomials) that does not change inside any basic subinterval but may be different for different basic
subintervals. Considering this function over eachbasic subinterval as a separate function, Lopez-de-los-Mozos et al. [4] obtain
overallO(n5) simple functions of t (partially defined over [t−, t+]), as there are n−1 domainsDe, e ∈ E, each domain hasO(n)
breakpoint curves, and F (x, t) over each breakpoint curve is split into O(n3) pieces that correspond to the basic subintervals.
(By ‘‘simple functions’’ we mean differentiable functions, rational or algebraic, each having a single analytic expression over
its domain, such that the number of intersection points between any two of them is bounded by a constant.) Then, they
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