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a b s t r a c t

Denote the sum of squares of all distances between all pairs of vertices in G by S(G). In this
paper, sharp bounds on the S(G) are determined for several classes of connected bipartite
graphs. All the extremal graphs having the minimal S(G) in the class of all connected
n-vertex bipartite graphs with a given vertex connectivity (resp. edge-connectivity) can
be identified.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider connected, simple and undirected graphs and assume that all graphs are connected, and
refer to Bondy and Murty [2] for notation and terminologies used but not defined here.

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. we will use G − v,G − uv to denote the graph that raises
from G by deleting the vertex v ∈ VG or edge uv ∈ EG, respectively (this notation is naturally extended if more than one
vertex or edge is deleted). Similarly, G + uv is a graph that arises from G by adding an edge uv ̸∈ EG, where u, v ∈ V (G). For
v ∈ VG, we denote the neighborhood and the degree of v by NG(v) (N(v) for short) and d(v), d(v) = |NG(v)|.

Recall that G is called k-connected if |G| > k and is G − Z is connected for every set Z ⊆ VG with |Z | < k. The greatest
integer k such that G is k-connected is the connectivity k(G) of G. Thus, k(G) = 0 if and only if G is disconnected or K1, and
k(K1) = n − 1 for all n ≥ 1.

Analogously, if |G| > 1 andG−N is connected for every setN ⊆ EG of fewer than l edges, thenG is called l-edge-connected.
The greatest integer l such that G is l-connected is the edge-connectivity k′(G) of G. In particular, k′(G) = 0 if G is disconnected.

A bipartite graph G is a simple graph, whose vertex set VG can be partitioned into two disjoint subsets V1 and V2 such that
every edge of G joins a vertex of V1 with a vertex of V2. A bipartite graph in which every two vertices from different partition
classes are adjacent is called complete, which is denoted by Km,n, wherem = |V1|, n = |V2|.

For two vertices u, v ∈ G (u ̸= v), the distance d(u, v) between vertices u and v in G is the number of edges in a shortest
path joining them. The distance of a vertex u ∈ V (G), denoted by LG(u), is the sum of the squares of all distances from u in G.

Let C s
n (resp. D t

n) be the class of all n-vertex bipartite graphs with connectivity s (resp. edge-connectivity t).
Let S = S(G) be the sum of squares of distances between all pairs of vertices of G, which is denoted by

S = S(G) =

∑
u,v∈VG

d2G(u, v) =
1
2

∑
v∈VG

LG(v)
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This quantity was introduced by Mustapha Aouchich and Pierre Hansen in [1] and has been extensively studied in the
monograph. Recently, S(G) is applied to the research of distance spectral radius. Zhou and Trinajstić [17] proved an upper
bound using the order n in addition to the sum of the squares of the distances S(G), see [16,18]. They also proved a lower
bound on the distance spectral radius of a graph using only S(G). As a continuance of it, in this paper, we determine sharp
bounds on S(G) for several classes of connected bipartite graphs. For surveys and some up-to-date papers related to Wiener
index of trees and line graphs, see [5,7,9–13,15] and [3,4,6,8,14], respectively.

In this paperwe study the quantity S in the case of n-vertex bipartite graphs,which is an important class of graphs in graph
theory. Based on the structure of bipartite graphs, sharp bounds on S among C s

n (resp.D
t
n) are determined. The corresponding

extremal graphs are identified, respectively.
Further on we need the following lemma, which is the direct consequence of the definition of S.

Lemma 1.1. Let G be a connected graph of order n and not isomorphic to Kn. Then for each edge e ∈ G, S(G) > S(G + e).

2. The graph with minimum S(G) among C s
n (resp. D t

n)

In this section, we determine the sharp lower bound on the sum of all distances of graphs among C s
n and D t

n, respectively.
In Kp,q, we assume that p ≥ q and by Kp,0, p ≥ 1 we mean pK1. We define two graphs Os∨1(Kn1,n2 ∪ Km1,m2 ) and

Os∨2(Kn1,n2 ∪ Km1,m2 ), where ∪ is the union of two graphs, Os(s ≥ 1) is an empty graph of order s and ∨1 is a graph
operation that joins all the vertices inOs to the vertices belonging to the partitions of cardinality n1 in Kn1,n2 andm1 in Km1,m2 ,
respectively; whereas, ∨2 is a graph operation that joins all the vertices in Os to the vertices belonging to the partitions of
cardinality n2 in Kn1,n2 and m2 in Km1,m2 , respectively. Note that ∨2 is defined only when n2 ≥ 1 andm2 ≥ 1.

Theorem 2.1. If 3p − 3q − 3s < 2 and p ≥ s, then S
(
Os∨1(K1 ∪ Kp,q)

)
> S

(
Os∨1(K1 ∪ Kp+1,q−1)

)
.

Proof. Let us denote S
(
Os∨1(K1 ∪ Kp,q)

)
by G and S

(
Os∨1(K1 ∪ Kp+1,q−1)

)
by G′. Here G and G′ are depicted in Fig. 1. We

partition VG = VG′ into {v} ∪ C ∪ A ∪ B ∪ {bq}, where C = {c1, c2, . . . , cs}, A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , bq−1}.
Note that

LG(a) = LG′ (a) − 3 for any a ∈ A; LG(b) = LG′ (b) + 3 for any b ∈ B;
LG(c) = LG′ (c) + 3 for any c ∈ C; LG(bq) = LG′ (bq) − 3p + 3s + 3q + 2;
LG(v) = LG′ (v) + 5.

Hence, this gives

S(G) − S(G′) =
1
2

⎛⎝∑
v∈VG

LG(v) −

∑
v∈VG′

LG′ (v)

⎞⎠
=

1
2

(∑
a∈A

(LG(a) − LG′ (a)) +

∑
b∈B

(LG(b) − LG′ (b)) +

∑
c∈C

(LG(c) − LG′ (c))

)

+
1
2

(
LG(v) − LG′ (v) + LG(bq) − LG′ (bq)

)
=

1
2

[
−3p + 3(q − 1) + 3s

]
+

1
2

[
−3p + 3q + 3s + 7

]
= −3p + 3q + 3s + 2 > 0

This completes the proof. □

The following result is the direct consequence of the above lemma.

Corollary 2.2. If q ≥ 1, then S
(
Os∨2(K1 ∪ Kp,q)

)
≥ S(Os∨1

(
K1 ∪ Kp,q)

)
. The equality holds only when p = q.

Lemma 2.3. If 3q + 3s + 8 < 3p, then S
(
Os∨1(K1 ∪ Kp,q)

)
> S

(
Os∨1(K1 ∪ Kp−1,q+1)

)
.

Proof. Let us denote S
(
Os∨1(K1∪Kp,q)

)
by G and S

(
Os∨1(K1∪Kp−1,q+1)

)
by G′. We partition VG = VG′ into {v}∪C∪A∪B∪{u},

where C = {c1, c2, . . . , cs}, A = {a1, a2, . . . , ap−1} and B = {b1, b2, . . . , bq} (see Fig. 2).
Note that

LG(a) = LG′ (a) + 3 for any a ∈ A; LG(b) = LG′ (b) − 3 for any a ∈ B;
LG(c) = LG′ (c) − 3 for any a ∈ C; LG(v) = LG′ (v) − 5;
LG(bq) = LG′ (bq) + 3p − 3s − 3q − 8.



Download English Version:

https://daneshyari.com/en/article/6871379

Download Persian Version:

https://daneshyari.com/article/6871379

Daneshyari.com

https://daneshyari.com/en/article/6871379
https://daneshyari.com/article/6871379
https://daneshyari.com

