Note

On the sum of the squares of all distances in bipartite graphs with given connectivity

Xianya Geng *, Hongjin Zhao
Department of Mathematics and Physics, Anhui University of Science and Technology, Huainan 232001, PR China

A R TICLE INFO

Article history:

Received 9 July 2016
Received in revised form 6 December 2017
Accepted 7 December 2017
Available online 1 February 2018

Keywords:

bipartite graph
Vertex connectivity
Edge connectivity

Abstract

Denote the sum of squares of all distances between all pairs of vertices in G by $S(G)$. In this paper, sharp bounds on the $S(G)$ are determined for several classes of connected bipartite graphs. All the extremal graphs having the minimal $S(G)$ in the class of all connected n-vertex bipartite graphs with a given vertex connectivity (resp. edge-connectivity) can be identified.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider connected, simple and undirected graphs and assume that all graphs are connected, and refer to Bondy and Murty [2] for notation and terminologies used but not defined here.

Let $G=\left(V_{G}, E_{G}\right)$ be a graph with vertex set V_{G} and edge set E_{G}. we will use $G-v, G-u v$ to denote the graph that raises from G by deleting the vertex $v \in V_{G}$ or edge $u v \in E_{G}$, respectively (this notation is naturally extended if more than one vertex or edge is deleted). Similarly, $G+u v$ is a graph that arises from G by adding an edge $u v \notin E_{G}$, where $u, v \in V(G)$. For $v \in V_{G}$, we denote the neighborhood and the degree of v by $N_{G}(v)\left(N(v)\right.$ for short) and $d(v), d(v)=\left|N_{G}(v)\right|$.

Recall that G is called k-connected if $|G|>k$ and is $G-Z$ is connected for every set $Z \subseteq V_{G}$ with $|Z|<k$. The greatest integer k such that G is k-connected is the connectivity $k(G)$ of G. Thus, $k(G)=0$ if and only if G is disconnected or K_{1}, and $k\left(K_{1}\right)=n-1$ for all $n \geq 1$.

Analogously, if $|G|>1$ and $G-N$ is connected for every set $N \subseteq E_{G}$ of fewer than l edges, then G is called l-edge-connected. The greatest integer l such that G is l-connected is the edge-connectivity $k^{\prime}(G)$ of G. In particular, $k^{\prime}(G)=0$ if G is disconnected.

A bipartite graph G is a simple graph, whose vertex set V_{G} can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge of G joins a vertex of V_{1} with a vertex of V_{2}. A bipartite graph in which every two vertices from different partition classes are adjacent is called complete, which is denoted by $K_{m, n}$, where $m=\left|V_{1}\right|, n=\left|V_{2}\right|$.

For two vertices $u, v \in G(u \neq v)$, the distance $d(u, v)$ between vertices u and v in G is the number of edges in a shortest path joining them. The distance of a vertex $u \in V(G)$, denoted by $L_{G}(u)$, is the sum of the squares of all distances from u in G.

Let \mathscr{C}_{n}^{s} (resp. \mathscr{D}_{n}^{t}) be the class of all n-vertex bipartite graphs with connectivity s (resp. edge-connectivity t).
Let $S=S(G)$ be the sum of squares of distances between all pairs of vertices of G, which is denoted by

$$
S=S(G)=\sum_{u, v \in V_{G}} d_{G}^{2}(u, v)=\frac{1}{2} \sum_{v \in V_{G}} L_{G}(v)
$$

[^0]This quantity was introduced by Mustapha Aouchich and Pierre Hansen in [1] and has been extensively studied in the monograph. Recently, $S(G)$ is applied to the research of distance spectral radius. Zhou and Trinajstić [17] proved an upper bound using the order n in addition to the sum of the squares of the distances $S(G)$, see $[16,18]$. They also proved a lower bound on the distance spectral radius of a graph using only $S(G)$. As a continuance of it, in this paper, we determine sharp bounds on $S(G)$ for several classes of connected bipartite graphs. For surveys and some up-to-date papers related to Wiener index of trees and line graphs, see [5,7,9-13,15] and [3,4,6,8,14], respectively.

In this paper we study the quantity S in the case of n-vertex bipartite graphs, which is an important class of graphs in graph theory. Based on the structure of bipartite graphs, sharp bounds on S among $\mathscr{C}_{n}^{s}\left(\right.$ resp. $\left.\mathscr{D}_{n}^{t}\right)$ are determined. The corresponding extremal graphs are identified, respectively.

Further on we need the following lemma, which is the direct consequence of the definition of S.
Lemma 1.1. Let G be a connected graph of order n and not isomorphic to K_{n}. Then for each edge $e \in \bar{G}, S(G)>S(G+e)$.

2. The graph with minimum $S(G)$ among $\mathscr{C}_{\boldsymbol{n}}^{s}$ (resp. $\mathscr{D}_{\boldsymbol{n}}^{\boldsymbol{t}}$)

In this section, we determine the sharp lower bound on the sum of all distances of graphs among \mathscr{C}_{n}^{s} and \mathscr{D}_{n}^{t}, respectively.
In $K_{p, q}$, we assume that $p \geq q$ and by $K_{p, 0}, p \geq 1$ we mean $p K_{1}$. We define two graphs $O_{s} \vee_{1}\left(K_{n_{1}, n_{2}} \cup K_{m_{1}, m_{2}}\right)$ and $O_{s} \vee_{2}\left(K_{n_{1}, n_{2}} \cup K_{m_{1}, m_{2}}\right)$, where \cup is the union of two graphs, $O_{s}(s \geq 1)$ is an empty graph of order s and \vee_{1} is a graph operation that joins all the vertices in O_{s} to the vertices belonging to the partitions of cardinality n_{1} in $K_{n_{1}, n_{2}}$ and m_{1} in $K_{m_{1}, m_{2}}$, respectively; whereas, \vee_{2} is a graph operation that joins all the vertices in O_{s} to the vertices belonging to the partitions of cardinality n_{2} in $K_{n_{1}, n_{2}}$ and m_{2} in $K_{m_{1}, m_{2}}$, respectively. Note that \vee_{2} is defined only when $n_{2} \geq 1$ and $m_{2} \geq 1$.

Theorem 2.1. If $3 p-3 q-3 s<2$ and $p \geq s$, then $S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p, q}\right)\right)>S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p+1, q-1}\right)\right)$.
Proof. Let us denote $S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p, q}\right)\right)$ by G and $S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p+1, q-1}\right)\right)$ by G^{\prime}. Here G and G^{\prime} are depicted in Fig. 1 . We partition $V_{G}=V_{G^{\prime}}$ into $\{v\} \cup C \cup A \cup B \cup\left\{b_{q}\right\}$, where $C=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}, A=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{q-1}\right\}$. Note that

$$
\begin{aligned}
& L_{G}(a)=L_{G^{\prime}}(a)-3 \quad \text { for any } a \in A ; L_{G}(b)=L_{G^{\prime}}(b)+3 \quad \text { for any } b \in B \\
& L_{G}(c)=L_{G^{\prime}}(c)+3 \text { for any } c \in C ; L_{G}\left(b_{q}\right)=L_{G^{\prime}}\left(b_{q}\right)-3 p+3 s+3 q+2 \\
& L_{G}(v)=L_{G^{\prime}}(v)+5
\end{aligned}
$$

Hence, this gives

$$
\begin{aligned}
S(G)-S\left(G^{\prime}\right)= & \frac{1}{2}\left(\sum_{v \in V_{G}} L_{G}(v)-\sum_{v \in V_{G^{\prime}}} L_{G^{\prime}}(v)\right) \\
= & \frac{1}{2}\left(\sum_{a \in A}\left(L_{G}(a)-L_{G^{\prime}}(a)\right)+\sum_{b \in B}\left(L_{G}(b)-L_{G^{\prime}}(b)\right)+\sum_{c \in C}\left(L_{G}(c)-L_{G^{\prime}}(c)\right)\right) \\
& +\frac{1}{2}\left(L_{G}(v)-L_{G^{\prime}}(v)+L_{G}\left(b_{q}\right)-L_{G^{\prime}}\left(b_{q}\right)\right) \\
= & \frac{1}{2}[-3 p+3(q-1)+3 s]+\frac{1}{2}[-3 p+3 q+3 s+7] \\
= & -3 p+3 q+3 s+2>0
\end{aligned}
$$

This completes the proof.
The following result is the direct consequence of the above lemma.
Corollary 2.2. If $q \geq 1$, then $S\left(O_{s} \vee_{2}\left(K_{1} \cup K_{p, q}\right)\right) \geq S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p, q}\right)\right)$. The equality holds only when $p=q$.
Lemma 2.3. If $3 q+3 s+8<3 p$, then $S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p, q}\right)\right)>S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p-1, q+1}\right)\right)$.
Proof. Let us denote $S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p, q}\right)\right)$ by G and $S\left(O_{s} \vee_{1}\left(K_{1} \cup K_{p-1, q+1}\right)\right)$ by G^{\prime}. We partition $V_{G}=V_{G^{\prime}}$ into $\{v\} \cup C \cup A \cup B \cup\{u\}$, where $C=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}, A=\left\{a_{1}, a_{2}, \ldots, a_{p-1}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}$ (see Fig. 2).

Note that

$$
\begin{aligned}
& L_{G}(a)=L_{G^{\prime}}(a)+3 \text { for any } a \in A ; \quad L_{G}(b)=L_{G^{\prime}}(b)-3 \text { for any } a \in B ; \\
& L_{G}(c)=L_{G^{\prime}}(c)-3 \text { for any } a \in C ; \quad L_{G}(v)=L_{G^{\prime}}(v)-5 ; \\
& L_{G}\left(b_{q}\right)=L_{G^{\prime}}\left(b_{q}\right)+3 p-3 s-3 q-8
\end{aligned}
$$

https://daneshyari.com/en/article/6871379

Download Persian Version:

https://daneshyari.com/article/6871379

Daneshyari.com

[^0]: ${ }^{4}$ Supported by National Natural Science Foundation of China (11401008 , 61672001, 61572035,61402011) and China Postdoctoral Science Foundation (2016M592030).

 * Corresponding author.

 E-mail address: gengxianya@sina.com (X. Geng).

