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a b s t r a c t

Given a simple undirected graph G = (V , E) with n vertices, if for the largest eigenvalue of
its Laplacian matrix λ1 there exists a lower bound λ1 ≥ α ≥ dG n

n−1 , then we have that its
Laplacian energy satisfies

LE(G) ≥ max{2dG, 2(α − dG)},

where dG =
d1+···dn

n is the average degree of G. This generic lower bound, obtainedwith the
majorization technique, allows us to obtain two lower bounds for LE(G) which are valid for
any connected bipartite graph, and for which the equalities are attained by K n

2 , n2
and Sn.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite simple undirected graph with vertex set V = {1, 2, . . . , n} and degrees d1 ≥ d2 ≥ · · · ≥ dn, and
dG =

2|E|

n the average degree. If A is the adjacency matrix of G and D is the diagonal matrix whose entries are the degrees of
the graph, one defines the Laplacian matrix L = D − A with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0. There are several
descriptors in Mathematical Chemistry defined in terms of these eigenvalues; among them the Laplacian energy is defined
in [4] as

LE(G) =

n∑
i=1

|λi − dG|.

In [4] it was shown for an arbitrary G that

LE(G) ≥ 2

√|E| +
1
2

n∑
i=1

(di − dG)2, (1)

and the equality is attained by the complete bipartite graph K n
2 , n2

. In [8] it was established for an arbitrary G that

LE(G) ≥

n∑
i=1

|di − dG|, (2)

an inequality that was slightly improved for connected graphs in [7] as

LE(G) ≥ 2 +

n∑
i=1

|di − dG|, (3)
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and where the equality is attained by the star graph Sn. Also, in [10] it was proven that

LE(G) ≥ 2dG, (4)

for an arbitrary G, and where the equality is attained by any regular complete k-partite graph, for 1 ≤ k ≤ n. Finally, in [2]
it was shown that for a connected Gwe have

LE(G) ≥ 2(d1 + 1 − dG), (5)

where the equality is attained by Sn, and more generally, it was argued that if σ (1 ≤ σ ≤ n − 1) is the largest integer such
that λσ ≥ dG, one has

LE(G) ≥ 2(
σ∑
j=1

dj + 1 − σdG). (6)

It is worth to mention that for d-regular graphs, the bounds (1) through (6) become
√
2nd, 0, 2, 2d, 2 and 2, respectively,

pointing out that they are not comparable.
In this note, using the majorization technique, we find a new general lower bound for the Laplacian energy of graphs, not

necessarily connected, satisfying a condition on the largest eigenvalue of their Laplace matrix, and as corollaries we obtain
two new non comparable lower bounds for the Laplacian energy of connected bipartite graphs.

Themajorization technique can be summarized as follows: given two n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) with
x1 ≥ x2 . . . ≥ xn and y1 ≥ y2 . . . yn, we say that x majorizes y and write x ≻ y in case

k∑
i=1

xi ≥

k∑
i=1

yi, (7)

for 1 ≤ k ≤ n − 1 and
n∑

i=1

xi =

n∑
i=1

yi. (8)

A Schur-convex function Φ : R → R keeps the majorization inequality, that is, if Φ is Schur-convex then x ≻ y implies
Φ(x) ≥ Φ(y). Likewise, a Schur-concave function reverses the inequality: for this type of function x ≻ y impliesΦ(x) ≤ Φ(y).
A simple way to construct a Schur-convex (resp. Schur-concave) function is to consider

Φ(x) =

n∑
i=1

f (xi),

where f : R → R is a convex (resp. concave) one-dimensional real function. For more details on majorization the reader is
referred to [6].

2. Lower bounds

The usual approach of the majorization technique presented in the introduction is the search on a certain subset S ⊂ Rn,
of its maximal and minimal elements, x∗ and x∗, respectively, which satisfy

x∗
≻ x

and

x ≻ x∗,

respectively, for all x ∈ S. If that is the case then

Φ(x∗) ≥ Φ(x)

and

Φ(x) ≥ Φ(x∗), (9)

for all x ∈ S. We will use a known result that identifies x∗ for particular subsets S ⊂ Rn and apply (9), when Φ is replaced
with the appropriate descriptor, in order to find the lower bounds desired. Specifically,we note that the one-dimensional real
function f (x) = |x−dG| is convex and therefore the descriptor LE(G) is a Schur-convex function if we replace the eigenvalues
λi in its definition with arbitrary real numbers xi. Now we can show the following preliminary result.

Proposition 1. For any G, not necessarily connected, if there is α such that λ1 ≥ α ≥ dG n
n−1 then we have

LE(G) ≥ max{2dG, 2(α − dG)}. (10)
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