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a b s t r a c t

Recently, Deshpande et al. introduced a new measure of the complexity of a Boolean
function. We call this measure the ‘‘goal value’’ of the function. The goal value of f is
defined in terms of a monotone, submodular utility function associated with f . As shown
by Deshpande et al., proving that a Boolean function f has small goal value can lead to
a good approximation algorithm for the Stochastic Boolean Function Evaluation problem
for f . Also, if f has small goal value, it indicates a close relationship between two other
measures of the complexity of f , its average-case decision tree complexity and its average-
case certificate complexity. In this paper, we explore the goal value measure in detail.
We present bounds on the goal values of arbitrary and specific Boolean functions, and
present results on properties of themeasure. We compare the goal valuemeasure to other,
previously studied, measures of the complexity of Boolean functions. Finally, we discuss a
number of open questions suggested by our work.
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1. Introduction

Deshpande et al. introduced a new measure of the complexity of a Boolean function [6]. We call this measure the ‘‘goal
value’’ of the function.1 In this paper, we explore properties of the goal value measure.

We begin with some background. The goal value measure was introduced as part of an effort to develop approximation
algorithms for the Stochastic Boolean Function Evaluation (SBFE) problem. In this problem, we are given a Boolean function
f (x1, . . . , xn), and we need to evaluate it on an initially unknown input x. For example, consider a situation where each bit
xi of x corresponds to the result of a medical test, and f is a function of the test results, indicating whether the patient has a
certain disease.

In addition to f , the input to the SBFE problem includes a cost ci and probability pi for each variable xi. The cost ci is the
cost associated with determining the value of xi, and pi is the independent probability that xi is 1. We may choose which
bits to ‘‘buy’’ sequentially, and the choice of the next bit can depend on the choices of the previous bits. The task in the SBFE
problem is to choose the sequence of bits so as to minimize the expected cost incurred before we determine f (x).

Once we know all bits of x, we have enough information to determine f (x). In fact, once we know enough bits that they
form a certificate of f (i.e., the value of f (x) is already determined by those bits alone), we also have enough information to
determine f (x). Thus any set of bits that forms a certificate has the same value to us. However, if the bits we know do not
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1 Deshpande et al. called it the Q -value, but we have chosen to use a more intuitive name.
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form a certificate, thenwe cannot determine f (x). Nevertheless, wemay still want to think of these bits as having some value
towards our goal of determining f (x). We can therefore define a (non-traditional) utility function that quantifies the value
of knowing particular subsets of the bits, by assigning a non-negative integer value to each partial assignment. For example,
the utility function might assign a value of 4 to knowing that x1 = 1 and x3 = 0. The maximum value of this utility function
should be achieved precisely on those sets of bits that form a certificate. Let us call this value Q .

Once we have such a utility function, there is a natural greedy approach to choosing which bits to ‘‘buy’’: buy bits one by
one, each timebuying the bit that achieves the largest expected increase in utility value, per unit cost, until you can determine
f (x). In general, this greedy approachwill not performwell. However, if the utility function has two useful properties, namely
monotonity and submodularity, then a result of Deshpande et al. implies that the expected cost of the greedy approach is at
most a factor of O(logQ ) times the minimum possible expected cost.2

We will define monotonicity and submodularity formally below. Intuitively, monotonicity means that utility increases
(or stays the same) as more bits are acquired. Submodularity is a diminishing returns property: if we consider the value of
a bit to be the increase in utility that it would provide, then postponing the purchase of a particular bit cannot increase its
value.

Call a utility function with the above properties a goal function for f . The goal value of a Boolean function f is the smallest
possible value of Q , of any goal function for f .

Intuitively, we can think of a goal function for f as being a monotone, submodular surrogate for f . It has an expanded
domain (including partial assignments to the variables) and an expanded range (the set {0, 1, . . . ,Q }, rather than just
{0, 1}). The goal value of f measures how much we need to expand the range in order to achieve both monotonicity and
submodularity. Deshpande et al. showed that, in addition to having implications for Boolean function evaluation, proving
that a Boolean function f has small goal value indicates a close relationship between two other measures of the complexity
of f : its average-case decision tree complexity and its average-case certificate complexity.

In this paper, however, our focus is not on the implications of goal value. Instead, we focus on understanding the
fundamental properties of the goal value measure itself. We prove new bounds on the goal values of general and specific
Boolean functions. We also consider the related 1-goal value and 0-goal value measures. Our results suggest a number of
interesting open questions.

We begin by presenting necessary definitions and explaining the known connections between goal value, decision tree
complexity, and Boolean function evaluation.

We then prove some generic properties of goal functions. While a single Boolean function can have different goal value
functions, we show that two distinct Boolean functions can only have the same goal function if they are complements of
each other. An interesting open question is whether each Boolean function has a unique optimal goal function.

We show that the goal value of every Boolean function f is at least n, if f depends on all n of its input variables. We note
that this lower bound is tight for certain Boolean functions, such as AND, OR and XOR functions. We also present tight goal
value bounds for Boolean k-of-n functions.

Deshpande et al. showed that the goal value of every Boolean function f is upper bounded by ds(f ) · cs(f ), where ds(f )
is the minimum number of terms in a DNF formula for the function, and cs(f ) is the minimum number of clauses in a CNF
formula for the function [6]. We show that if f is a Boolean read-once function, then the goal value of f is actually equal to
ds(f ) · cs(f ). Thus for read-once functions, there is a close relationship between goal value and the traditional complexity
measures ds(f ) and cs(f ).

We show that the goal value of any Boolean function f is at most 2n
−1. We do not know how close goal values can come

to this upper bound. Deshpande et al. showed that two specific Boolean functions have goal values lower bounded by 2n/2.
Using our bound on the goal value of read-once functions, we show that there is a read-once function whose goal value is
3

n
3 ( n3 ), which is equal to 2αn(n/3), where α =

log23
3 ≈ .528.

We give an (exponential-sized) integer program for arbitrary Boolean function f whose solution is an optimal goal
function for f .

2. Terminology and notation

Boolean functiondefinitions: LetV = {x1, . . . , xn}. A partial assignment is a vector b ∈ {0, 1, ∗}n. For partial assignments
a, b ∈ {0, 1, ∗}n, a is an extension of b, written a ⪰ b, if ai = bi for all bi ̸= ∗. We also say that b is contained in a.

A literal is a Boolean variable xi or its negation ¬xi. A term is a conjunction (∧) of literals. A clause is a disjunction (∨) of
literals. A DNF formula is either the constant 0 or 1, or a formula T1 ∨ T2 ∨ . . .∨ Tk where each Ti is a term. A CNF formula is
either the constant 0 or 1, or a formula C1 ∧ C2 ∧ · · · ∧ Ck where each Ci is a clause.

Given Boolean function f : {0, 1}n → {0, 1}, a partial assignment b ∈ {0, 1, ∗}n is a 0-certificate of f if f (a) = 0 for all
a ∈ {0, 1}n such that a ⪰ b. It is a 1-certificate if f (a) = 1 for all a ∈ {0, 1}n such that a ⪰ b. It is a certificate if it is either a
0-certificate or a 1-certificate. We say that b contains a variable xi if bi ̸= ∗. We will occasionally treat a certificate b as being
the set of variables xi such that bi ̸= ∗, together with the assignments given to them by b. The size of a certificate b is the

2 This follows from anO(logQ ) approximation bound for Stochastic Submodular Cover, using the Adaptive Greedy algorithm of Golovin and Krause [11].
This bound was originally claimed by Golovin and Krause, but an error in their proof was recently found [1]. Deshpande et al. provided an alternative proof
of the bound [6].
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