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1. Introduction

Animportant topic in the design of interconnection networks is the directed degree/diameter problem: what is the largest
possible order N(d, k) of a digraph G with maximum out-degree d and diameter < k? A simple inductive argument shows
that for 0 < | < k the number of vertices at distance [ from a fixed vertex v is bounded above by d'. Therefore, a natural
upper bound for the order of such a digraph is the so-called Moore bound M(d, k) = 1+ d + d*> + - - - + d*. A digraph that
attains this upper bound is called a Moore digraph. It is easily seen that a digraph G is Moore if and only if it is out-regular
with degree d, has diameter k and is k-geodetic, i.e. for any two vertices u, v there is at most one < k-path from u to v.

As it was shown by Bridges and Toueg in [ 1] that Moore digraphs exist only in the trivial cases d = 1 or k = 1 (the Moore
digraphs are directed (k + 1)-cycles and complete digraphs K41 respectively), much research has been devoted to the study
of digraphs that in some sense approximate Moore digraphs. For example, there is an extensive literature on digraphs with
maximum out-degree d, diameter < k and order M(d, k) — § for small § > 0; this is equivalent to relaxing the k-geodecity
requirement in the conditions for a digraph to be Moore. § is known as the defect of the digraph. The reader is referred to
the survey [5] for more information.

In this paper, however, we will consider the following related problem, which is obtained by retaining the k-geodecity
requirement in the above characterisation of Moore digraphs, but allowing the diameter to exceed k: what is the smallest
possible order of a k-geodetic digraph G with minimum out-degree > d? A k-geodetic digraph with minimum out-degree
> d and order M(d, k) + € is said to be a (d, k, +¢)-digraph or to have excess ¢. It was shown in [6] that there are no diregular
(2, k, +1)-digraphs for k > 2.1In 2016 it was shown in [3] that digraphs with excess one must be diregular and that there
are no (d, k, +1)-digraphs for k = 2, 3, 4 and sufficiently large d. In a separate paper [7], the present author has shown that
(2, k, +2)-digraphs must be diregular with degree d = 2 for k > 2. In the present paper, we classify the (2, 2, +2)-digraphs
up to isomorphism and show that there are no diregular (2, k, 4+-2)-digraphs for k > 3, thereby completing the proof of the
nonexistence of digraphs with degree d = 2 and excess € = 2 for k > 3. Our reasoning and notation will follow closely that
employed in [4] for the corresponding result for defect § = 2.
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Fig. 1. The vertices u and v.

2. Preliminary results

We will let G stand for a (2, k, +2)-digraph for arbitrary k > 2, i.e. G has minimum out-degree d = 2, is k-geodetic and
has order M(2, k) + 2. We will denote the vertex set of G by V(G). By the result of [7], G must be diregular with degree d = 2
for k > 2. The distance d(u, v) between vertices u and v is the length of the shortest path from u to v. Notice that d(u, v) is not
necessarily equal to d(v, u). u — v will indicate that there is an arc from u to v. We define the in- and out-neighbourhoods
ofavertexuby N~ (u) = {v € V(G) : v — u}and N*(u) = {v € V(G) : u — v} respectively; more generally, for 0 < [ < k,
the set {v € V(G) : d(u, v) = I} of vertices at distance exactly I from u will be denoted by N'(u). For 0 < I < k we will also
write Ty(u) = UﬁzoNi(u) for the set of vertices at distance < [ from u. The notation T;_1(u) will be abbreviated by T(u).

It is easily seen that for any vertex u of G, there are exactly two distinct vertices that are at distance > k + 1 from u. For
any u € V(G), we will write O(u) for the set of these vertices and call such a set an outlier set and its elements outliers of u.
Notice that O(u) = V(G) — Ti(u). An elementary counting argument shows that in a diregular (2, k, +2)-digraph every vertex
is also an outlier of exactly two vertices. We will say that a vertex u can reach a vertex v if v ¢ O(u).

Our proof will proceed by an analysis of a pair of vertices with exactly one common out-neighbour. First, we must show
that such a pair exists and deduce some elementary properties of pairs of vertices with identical out-neighbourhoods.

Lemma 1. For k > 2, let u and v be distinct vertices such that Nt(u) = N*(v) = {uq, uz}. Then u; € O(uy), u, € O(uq) and
there exists a vertex x such that O(u) = {v, x}, O(v) = {u, x}.

Proof. Suppose that u can reach v by a < k-path. Then v € T(u;) U T(uy). As N*(v) = N*(u), it follows that there would be
a < k-cycle through v, contradicting k-geodecity. If O(u) = {v, x}, thenx # v and x ¢ T(u;) U T(u;), so that v cannot reach x
by a < k-path. Similarly, if u; can reach u, by a < k-path, then we must have {u, v} N T(u;) # @, which is impossible. O

Lemma 2. For k > 2, there exists a pair of vertices u, v with [IN*(u) N NT(v)| = 1.

Proof. Suppose for a contradiction that there is no such pair of vertices. Define a map ¢ : V(G) — V(G) as follows. Let u™ be
an out-neighbour of a vertex u and let ¢(u) be the in-neighbour of u™ distinct from u. By our assumption, it is easily verified
that ¢ is a well-defined bijection with no fixed points and with square equal to the identity. It follows that G must have even
order, whereas |V(G)| = M(2, k) + 2isodd. O

u, v will now stand for a pair of vertices with a single common out-neighbour. We will label the vertices of Ty(u) according
to the scheme N*(u) = {uy, up}, N*(u1) = {us, ua}, N*(uz) = {us, us}, N*(u3) = {uz, ug}, N*(us) = {uo, u10} and so on,
with the same convention for the vertices of Ty(v), where we will assume that u, = v,.

3. Classification of (2, 2, +2)-digraphs
We begin by classifying the (2, 2, +2)-digraphs up to isomorphism. We will prove the following theorem.

Theorem 1. There are exactly two diregular (2, 2, +2)-digraphs, which are displayed in Figs. 2 and 5.

Let G be an arbitrary diregular (2, 2, +2)-digraph. G has order M(2, 2) + 2 = 9. By Lemma 2, G contains a pair of vertices
(u, v) such that [NT(u) " N*(v)] = 1; we will assume that u, = v,, so that we have the situation shown in Fig. 1.
We can immediately deduce some information on the possible positions of v and v in To(u).

Lemma 3. If v & O(u), then v € N*(uy). If vy & O(u), then vy € N™(u;).

Proof. v ¢ T(u,) by 2-geodecity. v # u by construction. If we had v = uy, then there would be two distinct < 2-paths from
uto uy. Also vy ¢ {u} U T(uy) by 2-geodecity and by assumption u; # vy. O
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