ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note On diregular digraphs with degree two and excess two

James Tuite

Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes, United Kingdom

ARTICLE INFO

Article history: Received 28 April 2017 Received in revised form 21 September 2017 Accepted 30 October 2017 Available online xxxx

Keywords: Degree/diameter problem Digraphs Excess Extremal digraphs

ABSTRACT

An important topic in the design of efficient networks is the construction of $(d, k, +\epsilon)$ digraphs, i.e. *k*-geodetic digraphs with minimum out-degree $\geq d$ and order $M(d, k) + \epsilon$, where M(d, k) represents the Moore bound for degree *d* and diameter *k* and $\epsilon > 0$ is the (small) excess of the digraph. Previous work has shown that there are no (2, k, +1)digraphs for $k \geq 2$. In a separate paper, the present author has shown that any (2, k, +2)digraph must be diregular for $k \geq 2$. In the present work, this analysis is completed by proving the nonexistence of diregular (2, k, +2)-digraphs for $k \geq 3$ and classifying diregular (2, 2, +2)-digraphs up to isomorphism.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An important topic in the design of interconnection networks is the directed degree/diameter problem: what is the largest possible order N(d, k) of a digraph G with maximum out-degree d and diameter $\leq k$? A simple inductive argument shows that for $0 \leq l \leq k$ the number of vertices at distance l from a fixed vertex v is bounded above by d^l . Therefore, a natural upper bound for the order of such a digraph is the so-called *Moore bound* $M(d, k) = 1 + d + d^2 + \cdots + d^k$. A digraph that attains this upper bound is called a *Moore digraph*. It is easily seen that a digraph G is Moore if and only if it is out-regular with degree d, has diameter k and is k-geodetic, i.e. for any two vertices u, v there is at most one $\leq k$ -path from u to v.

As it was shown by Bridges and Toueg in [1] that Moore digraphs exist only in the trivial cases d = 1 or k = 1 (the Moore digraphs are directed (k + 1)-cycles and complete digraphs K_{d+1} respectively), much research has been devoted to the study of digraphs that in some sense approximate Moore digraphs. For example, there is an extensive literature on digraphs with maximum out-degree d, diameter $\leq k$ and order $M(d, k) - \delta$ for small $\delta > 0$; this is equivalent to relaxing the k-geodecity requirement in the conditions for a digraph to be Moore. δ is known as the *defect* of the digraph. The reader is referred to the survey [5] for more information.

In this paper, however, we will consider the following related problem, which is obtained by retaining the *k*-geodecity requirement in the above characterisation of Moore digraphs, but allowing the diameter to exceed *k*: what is the smallest possible order of a *k*-geodetic digraph *G* with minimum out-degree $\geq d$? A *k*-geodetic digraph with minimum out-degree $\geq d$ and order $M(d, k) + \epsilon$ is said to be a $(d, k, +\epsilon)$ -digraph or to have *excess* ϵ . It was shown in [6] that there are no diregular (2, k, +1)-digraphs for $k \geq 2$. In 2016 it was shown in [3] that digraphs with excess one must be diregular and that there are no (d, k, +1)-digraphs for k = 2, 3, 4 and sufficiently large *d*. In a separate paper [7], the present author has shown that (2, k, +2)-digraphs must be diregular with degree d = 2 for $k \geq 2$. In the present paper, we classify the (2, 2, +2)-digraphs up to isomorphism and show that there are no diregular (2, k, +2)-digraphs for $k \geq 2$ and excess $\epsilon = 2$ for $k \geq 3$. Our reasoning and notation will follow closely that employed in [4] for the corresponding result for defect $\delta = 2$.

https://doi.org/10.1016/j.dam.2017.10.034 0166-218X/© 2017 Elsevier B.V. All rights reserved.

DOI of original article: http://dx.doi.org/10.1016/j.dam.2017.06.016. *E-mail address:* james.tuite@open.ac.uk.

<u>ARTICLE IN PRESS</u>

J. Tuite / Discrete Applied Mathematics 🛚 (💵 💷)

Fig. 1. The vertices *u* and *v*.

2. Preliminary results

We will let *G* stand for a (2, *k*, +2)-digraph for arbitrary $k \ge 2$, i.e. *G* has minimum out-degree d = 2, is *k*-geodetic and has order M(2, k) + 2. We will denote the vertex set of *G* by V(G). By the result of [7], *G* must be diregular with degree d = 2 for $k \ge 2$. The distance d(u, v) between vertices *u* and *v* is the length of the shortest path from *u* to *v*. Notice that d(u, v) is not necessarily equal to d(v, u). $u \to v$ will indicate that there is an arc from *u* to *v*. We define the in- and out-neighbourhoods of a vertex *u* by $N^{-}(u) = \{v \in V(G) : v \to u\}$ and $N^{+}(u) = \{v \in V(G) : u \to v\}$ respectively; more generally, for $0 \le l \le k$, the set $\{v \in V(G) : d(u, v) = l\}$ of vertices at distance exactly *l* from *u* will be denoted by $N^{l}(u)$. For $0 \le l \le k$ we will also write $T_{l}(u) = \bigcup_{i=0}^{l} N^{i}(u)$ for the set of vertices at distance $\le l$ from *u*. The notation $T_{k-1}(u)$ will be abbreviated by T(u).

It is easily seen that for any vertex u of G, there are exactly two distinct vertices that are at distance $\ge k + 1$ from u. For any $u \in V(G)$, we will write O(u) for the set of these vertices and call such a set an *outlier set* and its elements *outliers* of u. Notice that $O(u) = V(G) - T_k(u)$. An elementary counting argument shows that in a diregular (2, k, +2)-digraph every vertex is also an outlier of exactly two vertices. We will say that a vertex u can *reach* a vertex v if $v \notin O(u)$.

Our proof will proceed by an analysis of a pair of vertices with exactly one common out-neighbour. First, we must show that such a pair exists and deduce some elementary properties of pairs of vertices with identical out-neighbourhoods.

Lemma 1. For $k \ge 2$, let u and v be distinct vertices such that $N^+(u) = N^+(v) = \{u_1, u_2\}$. Then $u_1 \in O(u_2), u_2 \in O(u_1)$ and there exists a vertex x such that $O(u) = \{v, x\}, O(v) = \{u, x\}$.

Proof. Suppose that *u* can reach *v* by $a \le k$ -path. Then $v \in T(u_1) \cup T(u_2)$. As $N^+(v) = N^+(u)$, it follows that there would be $a \le k$ -cycle through *v*, contradicting *k*-geodecity. If $O(u) = \{v, x\}$, then $x \ne v$ and $x \ne T(u_1) \cup T(u_2)$, so that *v* cannot reach *x* by $a \le k$ -path. Similarly, if u_1 can reach u_2 by $a \le k$ -path, then we must have $\{u, v\} \cap T(u_1) \ne \emptyset$, which is impossible. \Box

Lemma 2. For $k \ge 2$, there exists a pair of vertices u, v with $|N^+(u) \cap N^+(v)| = 1$.

Proof. Suppose for a contradiction that there is no such pair of vertices. Define a map $\phi : V(G) \to V(G)$ as follows. Let u^+ be an out-neighbour of a vertex u and let $\phi(u)$ be the in-neighbour of u^+ distinct from u. By our assumption, it is easily verified that ϕ is a well-defined bijection with no fixed points and with square equal to the identity. It follows that G must have even order, whereas |V(G)| = M(2, k) + 2 is odd. \Box

u, v will now stand for a pair of vertices with a single common out-neighbour. We will label the vertices of $T_k(u)$ according to the scheme $N^+(u) = \{u_1, u_2\}, N^+(u_1) = \{u_3, u_4\}, N^+(u_2) = \{u_5, u_6\}, N^+(u_3) = \{u_7, u_8\}, N^+(u_4) = \{u_9, u_{10}\}$ and so on, with the same convention for the vertices of $T_k(v)$, where we will assume that $u_2 = v_2$.

3. Classification of (2, 2, +2)-digraphs

We begin by classifying the (2, 2, +2)-digraphs up to isomorphism. We will prove the following theorem.

Theorem 1. There are exactly two diregular (2, 2, +2)-digraphs, which are displayed in Figs. 2 and 5.

Let *G* be an arbitrary diregular (2, 2, +2)-digraph. *G* has order M(2, 2) + 2 = 9. By Lemma 2, *G* contains a pair of vertices (u, v) such that $|N^+(u) \cap N^+(v)| = 1$; we will assume that $u_2 = v_2$, so that we have the situation shown in Fig. 1. We can immediately deduce some information on the possible positions of v and v_1 in $T_2(u)$.

Lemma 3. If $v \notin O(u)$, then $v \in N^+(u_1)$. If $v_1 \notin O(u)$, then $v_1 \in N^+(u_1)$.

Proof. $v \notin T(u_2)$ by 2-geodecity. $v \neq u$ by construction. If we had $v = u_1$, then there would be two distinct \leq 2-paths from u to u_2 . Also $v_1 \notin \{u\} \cup T(u_2)$ by 2-geodecity and by assumption $u_1 \neq v_1$. \Box

Please cite this article in press as: J. Tuite, On diregular digraphs with degree two and excess two, Discrete Applied Mathematics (2017), https://doi.org/10.1016/j.dam.2017.10.034.

Download English Version:

https://daneshyari.com/en/article/6871451

Download Persian Version:

https://daneshyari.com/article/6871451

Daneshyari.com