Note

On diregular digraphs with degree two and excess two

James Tuite
Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes, United Kingdom

A RTICLE INFO

Article history:

Received 28 April 2017
Received in revised form 21 September 2017
Accepted 30 October 2017
Available online xxxx

Keywords:

Degree/diameter problem
Digraphs
Excess
Extremal digraphs

Abstract

An important topic in the design of efficient networks is the construction of $(d, k,+\epsilon)-$ digraphs, i.e. k-geodetic digraphs with minimum out-degree $\geq d$ and order $M(d, k)+\epsilon$, where $M(d, k)$ represents the Moore bound for degree d and diameter k and $\epsilon>0$ is the (small) excess of the digraph. Previous work has shown that there are no $(2, k,+1)$ digraphs for $k \geq 2$. In a separate paper, the present author has shown that any $(2, k,+2)$ digraph must be diregular for $k \geq 2$. In the present work, this analysis is completed by proving the nonexistence of diregular (2, $k,+2$)-digraphs for $k \geq 3$ and classifying diregular (2, 2, +2)-digraphs up to isomorphism.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An important topic in the design of interconnection networks is the directed degree/diameter problem: what is the largest possible order $N(d, k)$ of a digraph G with maximum out-degree d and diameter $\leq k$? A simple inductive argument shows that for $0 \leq l \leq k$ the number of vertices at distance l from a fixed vertex v is bounded above by d^{l}. Therefore, a natural upper bound for the order of such a digraph is the so-called Moore bound $M(d, k)=1+d+d^{2}+\cdots+d^{k}$. A digraph that attains this upper bound is called a Moore digraph. It is easily seen that a digraph G is Moore if and only if it is out-regular with degree d, has diameter k and is k-geodetic, i.e. for any two vertices u, v there is at most one $\leq k$-path from u to v.

As it was shown by Bridges and Toueg in [1] that Moore digraphs exist only in the trivial cases $d=1$ or $k=1$ (the Moore digraphs are directed ($k+1$)-cycles and complete digraphs K_{d+1} respectively), much research has been devoted to the study of digraphs that in some sense approximate Moore digraphs. For example, there is an extensive literature on digraphs with maximum out-degree d, diameter $\leq k$ and order $M(d, k)-\delta$ for small $\delta>0$; this is equivalent to relaxing the k-geodecity requirement in the conditions for a digraph to be Moore. δ is known as the defect of the digraph. The reader is referred to the survey [5] for more information.

In this paper, however, we will consider the following related problem, which is obtained by retaining the k-geodecity requirement in the above characterisation of Moore digraphs, but allowing the diameter to exceed k : what is the smallest possible order of a k-geodetic digraph G with minimum out-degree $\geq d$? A k-geodetic digraph with minimum out-degree $\geq d$ and order $M(d, k)+\epsilon$ is said to be a $(d, k,+\epsilon)$-digraph or to have excess ϵ. It was shown in [6] that there are no diregular ($2, k,+1$)-digraphs for $k \geq 2$. In 2016 it was shown in [3] that digraphs with excess one must be diregular and that there are no $(d, k,+1)$-digraphs for $k=2,3,4$ and sufficiently large d. In a separate paper [7], the present author has shown that $(2, k,+2)$-digraphs must be diregular with degree $d=2$ for $k \geq 2$. In the present paper, we classify the ($2,2,+2$)-digraphs up to isomorphism and show that there are no diregular ($2, k,+2$)-digraphs for $k \geq 3$, thereby completing the proof of the nonexistence of digraphs with degree $d=2$ and excess $\epsilon=2$ for $k \geq 3$. Our reasoning and notation will follow closely that employed in [4] for the corresponding result for defect $\delta=2$.

[^0]

Fig. 1. The vertices u and v.

2. Preliminary results

We will let G stand for a $(2, k,+2)$-digraph for arbitrary $k \geq 2$, i.e. G has minimum out-degree $d=2$, is k-geodetic and has order $M(2, k)+2$. We will denote the vertex set of G by $V(G)$. By the result of [7], G must be diregular with degree $d=2$ for $k \geq 2$. The distance $d(u, v)$ between vertices u and v is the length of the shortest path from u to v. Notice that $d(u, v)$ is not necessarily equal to $d(v, u) . u \rightarrow v$ will indicate that there is an arc from u to v. We define the in- and out-neighbourhoods of a vertex u by $N^{-}(u)=\{v \in V(G): v \rightarrow u\}$ and $N^{+}(u)=\{v \in V(G): u \rightarrow v\}$ respectively; more generally, for $0 \leq l \leq k$, the set $\{v \in V(G): d(u, v)=l\}$ of vertices at distance exactly l from u will be denoted by $N^{l}(u)$. For $0 \leq l \leq k$ we will also write $T_{l}(u)=\cup_{i=0}^{l} N^{i}(u)$ for the set of vertices at distance $\leq l$ from u. The notation $T_{k-1}(u)$ will be abbreviated by $T(u)$.

It is easily seen that for any vertex u of G, there are exactly two distinct vertices that are at distance $\geq k+1$ from u. For any $u \in V(G)$, we will write $O(u)$ for the set of these vertices and call such a set an outlier set and its elements outliers of u. Notice that $O(u)=V(G)-T_{k}(u)$. An elementary counting argument shows that in diregular ($2, k,+2$)-digraph every vertex is also an outlier of exactly two vertices. We will say that a vertex u can reach a vertex v if $v \notin O(u)$.

Our proof will proceed by an analysis of a pair of vertices with exactly one common out-neighbour. First, we must show that such a pair exists and deduce some elementary properties of pairs of vertices with identical out-neighbourhoods.

Lemma 1. For $k \geq 2$, let u and v be distinct vertices such that $N^{+}(u)=N^{+}(v)=\left\{u_{1}, u_{2}\right\}$. Then $u_{1} \in O\left(u_{2}\right), u_{2} \in O\left(u_{1}\right)$ and there exists a vertex x such that $O(u)=\{v, x\}, O(v)=\{u, x\}$.

Proof. Suppose that u can reach v by a $\leq k$-path. Then $v \in T\left(u_{1}\right) \cup T\left(u_{2}\right)$. As $N^{+}(v)=N^{+}(u)$, it follows that there would be a $\leq k$-cycle through v, contradicting k-geodecity. If $O(u)=\{v, x\}$, then $x \neq v$ and $x \notin T\left(u_{1}\right) \cup T\left(u_{2}\right)$, so that v cannot reach x by a $\leq k$-path. Similarly, if u_{1} can reach u_{2} by a $\leq k$-path, then we must have $\{u, v\} \cap T\left(u_{1}\right) \neq \varnothing$, which is impossible.

Lemma 2. For $k \geq 2$, there exists a pair of vertices u, v with $\left|N^{+}(u) \cap N^{+}(v)\right|=1$.
Proof. Suppose for a contradiction that there is no such pair of vertices. Define a map $\phi: V(G) \rightarrow V(G)$ as follows. Let u^{+}be an out-neighbour of a vertex u and let $\phi(u)$ be the in-neighbour of u^{+}distinct from u. By our assumption, it is easily verified that ϕ is a well-defined bijection with no fixed points and with square equal to the identity. It follows that G must have even order, whereas $|V(G)|=M(2, k)+2$ is odd.
u, v will now stand for a pair of vertices with a single common out-neighbour. We will label the vertices of $T_{k}(u)$ according to the scheme $N^{+}(u)=\left\{u_{1}, u_{2}\right\}, N^{+}\left(u_{1}\right)=\left\{u_{3}, u_{4}\right\}, N^{+}\left(u_{2}\right)=\left\{u_{5}, u_{6}\right\}, N^{+}\left(u_{3}\right)=\left\{u_{7}, u_{8}\right\}, N^{+}\left(u_{4}\right)=\left\{u_{9}, u_{10}\right\}$ and so on, with the same convention for the vertices of $T_{k}(v)$, where we will assume that $u_{2}=v_{2}$.

3. Classification of $(2,2,+2)$-digraphs

We begin by classifying the $(2,2,+2)$-digraphs up to isomorphism. We will prove the following theorem.
Theorem 1. There are exactly two diregular (2, 2, +2)-digraphs, which are displayed in Figs. 2 and 5.
Let G be an arbitrary diregular ($2,2,+2$)-digraph. G has order $M(2,2)+2=9$. By Lemma $2, G$ contains a pair of vertices (u, v) such that $\left|N^{+}(u) \cap N^{+}(v)\right|=1$; we will assume that $u_{2}=v_{2}$, so that we have the situation shown in Fig. 1.

We can immediately deduce some information on the possible positions of v and v_{1} in $T_{2}(u)$.
Lemma 3. If $v \notin O(u)$, then $v \in N^{+}\left(u_{1}\right)$. If $v_{1} \notin O(u)$, then $v_{1} \in N^{+}\left(u_{1}\right)$.
Proof. $v \notin T\left(u_{2}\right)$ by 2-geodecity. $v \neq u$ by construction. If we had $v=u_{1}$, then there would be two distinct ≤ 2-paths from u to u_{2}. Also $v_{1} \notin\{u\} \cup T\left(u_{2}\right)$ by 2-geodecity and by assumption $u_{1} \neq v_{1}$.

https://daneshyari.com/en/article/6871451

Download Persian Version:

https://daneshyari.com/article/6871451

Daneshyari.com

[^0]: DOI of original article: http://dx.doi.org/10.1016/j.dam.2017.06.016.
 E-mail address: james.tuite@open.ac.uk.

