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a b s t r a c t

An important topic in the design of efficient networks is the construction of (d, k, +ϵ)-
digraphs, i.e. k-geodetic digraphs with minimum out-degree ≥ d and order M(d, k) + ϵ,
where M(d, k) represents the Moore bound for degree d and diameter k and ϵ > 0 is
the (small) excess of the digraph. Previous work has shown that there are no (2, k, +1)-
digraphs for k ≥ 2. In a separate paper, the present author has shown that any (2, k, +2)-
digraph must be diregular for k ≥ 2. In the present work, this analysis is completed
by proving the nonexistence of diregular (2, k, +2)-digraphs for k ≥ 3 and classifying
diregular (2, 2, +2)-digraphs up to isomorphism.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An important topic in the design of interconnection networks is the directed degree/diameter problem:what is the largest
possible order N(d, k) of a digraph G with maximum out-degree d and diameter ≤ k? A simple inductive argument shows
that for 0 ≤ l ≤ k the number of vertices at distance l from a fixed vertex v is bounded above by dl. Therefore, a natural
upper bound for the order of such a digraph is the so-called Moore bound M(d, k) = 1 + d + d2 + · · · + dk. A digraph that
attains this upper bound is called a Moore digraph. It is easily seen that a digraph G is Moore if and only if it is out-regular
with degree d, has diameter k and is k-geodetic, i.e. for any two vertices u, v there is at most one ≤ k-path from u to v.

As it was shown by Bridges and Toueg in [1] that Moore digraphs exist only in the trivial cases d = 1 or k = 1 (the Moore
digraphs are directed (k+1)-cycles and complete digraphs Kd+1 respectively), much research has been devoted to the study
of digraphs that in some sense approximate Moore digraphs. For example, there is an extensive literature on digraphs with
maximum out-degree d, diameter ≤ k and order M(d, k) − δ for small δ > 0; this is equivalent to relaxing the k-geodecity
requirement in the conditions for a digraph to be Moore. δ is known as the defect of the digraph. The reader is referred to
the survey [5] for more information.

In this paper, however, we will consider the following related problem, which is obtained by retaining the k-geodecity
requirement in the above characterisation of Moore digraphs, but allowing the diameter to exceed k: what is the smallest
possible order of a k-geodetic digraph G with minimum out-degree ≥ d? A k-geodetic digraph with minimum out-degree
≥ d and orderM(d, k)+ ϵ is said to be a (d, k, +ϵ)-digraph or to have excess ϵ. It was shown in [6] that there are no diregular
(2, k, +1)-digraphs for k ≥ 2. In 2016 it was shown in [3] that digraphs with excess one must be diregular and that there
are no (d, k, +1)-digraphs for k = 2, 3, 4 and sufficiently large d. In a separate paper [7], the present author has shown that
(2, k, +2)-digraphs must be diregular with degree d = 2 for k ≥ 2. In the present paper, we classify the (2, 2, +2)-digraphs
up to isomorphism and show that there are no diregular (2, k, +2)-digraphs for k ≥ 3, thereby completing the proof of the
nonexistence of digraphs with degree d = 2 and excess ϵ = 2 for k ≥ 3. Our reasoning and notation will follow closely that
employed in [4] for the corresponding result for defect δ = 2.
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Fig. 1. The vertices u and v.

2. Preliminary results

We will let G stand for a (2, k, +2)-digraph for arbitrary k ≥ 2, i.e. G has minimum out-degree d = 2, is k-geodetic and
has orderM(2, k)+ 2. We will denote the vertex set of G by V (G). By the result of [7], Gmust be diregular with degree d = 2
for k ≥ 2. The distance d(u, v) between vertices u and v is the length of the shortest path from u to v. Notice that d(u, v) is not
necessarily equal to d(v, u). u → v will indicate that there is an arc from u to v. We define the in- and out-neighbourhoods
of a vertex u by N−(u) = {v ∈ V (G) : v → u} and N+(u) = {v ∈ V (G) : u → v} respectively; more generally, for 0 ≤ l ≤ k,
the set {v ∈ V (G) : d(u, v) = l} of vertices at distance exactly l from u will be denoted by N l(u). For 0 ≤ l ≤ k we will also
write Tl(u) = ∪

l
i=0N

i(u) for the set of vertices at distance ≤ l from u. The notation Tk−1(u) will be abbreviated by T (u).
It is easily seen that for any vertex u of G, there are exactly two distinct vertices that are at distance ≥ k + 1 from u. For

any u ∈ V (G), we will write O(u) for the set of these vertices and call such a set an outlier set and its elements outliers of u.
Notice that O(u) = V (G)−Tk(u). An elementary counting argument shows that in a diregular (2, k, +2)-digraph every vertex
is also an outlier of exactly two vertices. We will say that a vertex u can reach a vertex v if v ̸∈ O(u).

Our proof will proceed by an analysis of a pair of vertices with exactly one common out-neighbour. First, we must show
that such a pair exists and deduce some elementary properties of pairs of vertices with identical out-neighbourhoods.

Lemma 1. For k ≥ 2, let u and v be distinct vertices such that N+(u) = N+(v) = {u1, u2}. Then u1 ∈ O(u2), u2 ∈ O(u1) and
there exists a vertex x such that O(u) = {v, x},O(v) = {u, x}.

Proof. Suppose that u can reach v by a ≤ k-path. Then v ∈ T (u1) ∪ T (u2). As N+(v) = N+(u), it follows that there would be
a ≤ k-cycle through v, contradicting k-geodecity. If O(u) = {v, x}, then x ̸= v and x ̸∈ T (u1)∪ T (u2), so that v cannot reach x
by a ≤ k-path. Similarly, if u1 can reach u2 by a ≤ k-path, then we must have {u, v} ∩ T (u1) ̸= ∅, which is impossible. □

Lemma 2. For k ≥ 2, there exists a pair of vertices u, v with |N+(u) ∩ N+(v)| = 1.

Proof. Suppose for a contradiction that there is no such pair of vertices. Define a map φ : V (G) → V (G) as follows. Let u+ be
an out-neighbour of a vertex u and let φ(u) be the in-neighbour of u+ distinct from u. By our assumption, it is easily verified
that φ is a well-defined bijection with no fixed points and with square equal to the identity. It follows that Gmust have even
order, whereas |V (G)| = M(2, k) + 2 is odd. □

u, v will now stand for a pair of verticeswith a single common out-neighbour.Wewill label the vertices of Tk(u) according
to the scheme N+(u) = {u1, u2},N+(u1) = {u3, u4},N+(u2) = {u5, u6},N+(u3) = {u7, u8},N+(u4) = {u9, u10} and so on,
with the same convention for the vertices of Tk(v), where we will assume that u2 = v2.

3. Classification of (2, 2, +2)-digraphs

We begin by classifying the (2, 2, +2)-digraphs up to isomorphism. We will prove the following theorem.

Theorem 1. There are exactly two diregular (2, 2, +2)-digraphs, which are displayed in Figs. 2 and 5.

Let G be an arbitrary diregular (2, 2, +2)-digraph. G has orderM(2, 2) + 2 = 9. By Lemma 2, G contains a pair of vertices
(u, v) such that |N+(u) ∩ N+(v)| = 1; we will assume that u2 = v2, so that we have the situation shown in Fig. 1.

We can immediately deduce some information on the possible positions of v and v1 in T2(u).

Lemma 3. If v ̸∈ O(u), then v ∈ N+(u1). If v1 ̸∈ O(u), then v1 ∈ N+(u1).

Proof. v ̸∈ T (u2) by 2-geodecity. v ̸= u by construction. If we had v = u1, then there would be two distinct ≤ 2-paths from
u to u2. Also v1 ̸∈ {u} ∪ T (u2) by 2-geodecity and by assumption u1 ̸= v1. □
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