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a b s t r a c t

A facial unique-maximum coloring of a plane graph is a vertex coloring where on each face
α the maximal color appears exactly once on the vertices of α. If the coloring is required
to be proper, then the upper bound for the minimal number of colors required for such
a coloring is set to 5. Fabrici and Göring (2016) even conjectured that 4 colors always
suffice. Confirming the conjecture would hence give a considerable strengthening of the
Four Color Theorem. In this paper, we prove that the conjecture holds for subcubic plane
graphs, outerplane graphs and plane quadrangulations. Additionally, we consider the facial
edge-coloring analogue of the aforementioned coloring and prove that every 2-connected
plane graph admits such a coloring with at most 4 colors.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider simple graphs only. We call a graph planar if it can be embedded in the plane without crossing
edges and we call it plane if it is already embedded in this way. A coloring of a graph is an assignment of colors to vertices.
If in a coloring adjacent vertices receive distinct colors, it is proper. The cornerstone of graph colorings is the Four Color
Theorem stating that every planar graph can be properly colored using at most 4 colors [1]. Fabrici and Göring [5] proposed
the following strengthening of the Four Color Theorem.

Conjecture 1 (Fabrici and Göring [5]). If G is a plane graph, then there is a proper coloring of the vertices of G by colors in
{1, 2, 3, 4} such that every face contains a unique vertex colored with the maximal color appearing on that face.

A proper coloring of a graph embedded on some surface, where colors are integers and every face has a unique vertex
colored with a maximal color, is called a facial unique-maximum coloring or FUM-coloring for short (Wendland uses the
notion capital coloring instead). This type of coloring was first studied by Fabrici and Göring [5]. The main motivation for
their research comes from the unique-maximum coloring (also known as ordered coloring), defined as a coloring where
there is only one vertex colored with the maximal color on every path in a graph. Studying unique-maximum coloring was
motivated due to a number of applications it finds in various branches ofmathematics and computer science; see, e.g., [2,3,7]
for more details. Fabrici and Göring used this concept in a facial version, which is of great interest, among others, also due
to Conjecture 1 and its direct connection to the Four Color Theorem. Coloring embedded graphs with respect to faces is a
bursting field itself; the main directions are presented in a recent survey by Czap and Jendrol’ [4].
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For a graph G, the minimum number k such that G admits a FUM-coloring with colors {1, 2, . . . , k} is called the FUM
chromatic number of G, denoted by χfum(G). Fabrici and Göring [5] proved that if G is a plane graph, then χfum(G) ≤ 6. Their
result was further improved as follows.

Theorem 1 (Wendland [9]). If G is a plane graph, then χfum(G) ≤ 5.

We show that the upper bound 4 from Conjecture 1 holds for several subclasses of plane graphs, and that, surprisingly,
the bound is tight in most of the cases. The main result of the paper regarding the FUM-coloring of vertices is the following.

Theorem 2. If G is a plane subcubic graph or an outerplane graph, then χfum(G) ≤ 4.

In the second part of the paper, we consider the edge-coloring version of the problem, which has been introduced by
Fabrici, Jendrol’, and Vrbjarová [6]. For a graphG embedded on some surface, two distinct edges are said to be facially adjacent
if they are consecutive in some facial path, i.e., they have a common vertex and they are incident with a same face. A facial
edge-coloring is a coloring of edges such that facially adjacent edges receive distinct colors. It is rather straightforward to
prove that every plane graph admits a facial edge-coloring with at most 4 colors.

For a graph G, we denote by χ ′

fum(G) the minimum number k such that there exists a facial edge-coloring using colors
1, . . . , k such that each face is incident with a unique edge colored with the maximal color. Such a coloring is called a FUM-
edge-coloring. In [6], Fabrici et al. proposed the following conjecture.

Conjecture 2 (Fabrici et al. [6]). If G is a 2-edge-connected plane graph, then χ ′

fum(G) ≤ 4.

In [6], the authors proved that χ ′

fum(G) ≤ 6 for every 2-edge-connected plane graph G. Our main result is that we
prove χ ′

fum(G) ≤ 4 if the assumption that the graph is 2-edge-connected is replaced by 2-vertex-connectivity, supporting
Conjecture 2.

Theorem 3. If G is a 2-vertex-connected plane graph, then χ ′

fum(G) ≤ 4.

Observe that every edge in an embedded graph is facially adjacent to atmost four other edges, therefore one can translate
the problem of facial edge-coloring of a plane graph to a vertex coloring of a plane graph with maximum degree 4. Hence,
Theorem 1 directly implies χ ′

fum(G) ≤ 5 for every plane graph G. Similarly, Theorem 2 implies that if G is obtained from a
plane graph by subdividing every edge, then χ ′

fum(G) ≤ 4.
The paper is organized as follows. In Section 2, we prove Theorem 2 and discuss the FUM-coloring of vertices. In Section 3,

we consider the FUM-edge-coloring and prove Theorem 3. Both proofs, of Theorems 2 and 3, use precoloring extension
technique successfully applied by Thomassen [8] when proving that every planar graph is 5-choosable. In Concluding
remarks, we present some related results and discuss possible future directions on this topic.

2. FUM-(vertex-)coloring

In this section we consider the FUM-coloring of vertices and confirm that Conjecture 1 holds for several subclasses of
plane graphs.

First, we recall a theorem, which is the main tool used in [5], and will prove helpful also in proving our results.

Theorem 4 (Fabrici and Göring [5]). Every plane graph has a (not necessarily proper) 3-coloring with colors black, blue, and red
such that

(1) each face is incident with at most one red vertex,
(2) each face that is not incident with a red vertex is incident with exactly one blue vertex.

A slightly stronger version of Theorem 4 was proved by Wendland [9] who also added the conclusion that each triangle,
facial or separating, contains at least one vertex that is not black. This enabled him to improve the upper bound to 5 colors.

Recall that Conjecture 1 states that if G is a plane graph, then its FUM chromatic number is 4, which is the same upper
bound as for the chromatic number. One can therefore ask, which are the plane graphs admitting a FUM-coloring with at
most 3 colors. However, natural candidates such as graphs of large girth, quadrangulations, and outerplane graphs have
infinitely many examples with FUM chromatic number 4.

The example in Fig. 1 shows that there is no analogue of Grötzsch’s result for the FUM-coloring. Indeed, every vertex lies
on the outer face, and hence only one can be colored with 3 (assuming 3 colors suffice). As every vertex is incident to at most
three faces, the maximal color of the fourth face is 2, and hence all the other vertices should receive 1, which is not possible,
since the coloring must be proper.

We continue by considering plane quadrangulations.

Proposition 1. If G is a plane quadrangulation, then χfum(G) ≤ 4. Moreover, there exists an infinite family of plane
quadrangulations with FUM chromatic number 4.
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