The convexity of induced paths of order three and applications: Complexity aspects

Rafael T. Araújo ${ }^{\text {a }}$, Rudini M. Sampaio ${ }^{\text {a,*, }}$, Vinícius F. dos Santos ${ }^{\text {b }}$, Jayme L. Szwarcfiter ${ }^{\text {c,d }}$
a Universidade Federal do Ceará, Fortaleza, Brazil
${ }^{\text {b }}$ Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
${ }^{\text {c }}$ IM, COPPE, NCE, Universidade Federal do Rio de Janeiro, Brazil
${ }^{\text {d }}$ Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brazil

ARTICLE INFO

Article history:

Received 5 September 2016
Accepted 13 November 2017
Available online xxxx

Keywords:

Graph convexity
Geodesic convexity
Algorithms
Complexity

Abstract

In this paper, we introduce a new convexity on graphs similar to the well known P_{3} convexity, which we will call P_{3}^{*}-convexity. We show that several P_{3}^{*}-convexity parameters (hull number, convexity number, Carathéodory number, Radon number, interval number and percolation time) are NP-hard even on bipartite graphs. We prove a strong relationship between this convexity and the well known geodesic convexity, which implies several NP-hardness results for the latter. In order to show that, we prove that the hull number for the P_{3}-convexity is NP-hard even for subgraphs of grids and that the convexity number for the P_{3}-convexity is NP-hard even for bipartite graphs with diameter 3 . We also obtain linear time algorithms to determine those parameters for the above mentioned convexities for cographs and P_{4}-sparse graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Convexity spaces have been considered in different branches of mathematics. The study of convexities applied to graphs has started more recently, about 50 years ago [14,19,20]. Abstract convexity parameters, when considered on graph convexities, give rise to interesting graph parameters. In particular, complexity aspects related to the computation of these parameters are the main goal of various recent papers.

The computation of convexity parameters for a graph depends on the particular convexity being considered. Among the existing convexities we can mention the following, whose convex sets are based on paths of the graph: geodesic, monophonic, P_{3}, m^{3} and triangle-path convexities. They are defined by letting the convex sets be closed, respectively, under shortest paths [8], induced paths [10], paths of order 3 [5], induced paths of length at least 3 [13] and T-paths [6] (paths which allow only chords between vertices at distance 2 in the path).

In this paper, we introduce the P_{3}^{*}-convexity, where the convex sets are closed under induced paths of length 2 . That is, a subset $S \subseteq V(G)$ is P_{3}^{*}-convex if every vertex in an induced path of length 2 between two vertices in S also belongs to S. Equivalently, a set S is P_{3}^{*}-convex if no vertex outside S has two non-adjacent neighbors in S.

A motivation for studying the proposed convexity is that it fills an existing gap considering the monophonic and the m^{3}-convexities, while being close to the P_{3}-convexity. At the same time, it turns out that there is also a strong relationship between the proposed P_{3}^{*}-convexity and the geodesic convexity, since every geodesic convex set is P_{3}^{*}-convex.

[^0]This relationship automatically implies several NP-hardness results on parameters for the geodesic convexity, providing a common framework for these proofs, as we show in Section 5. As for the P_{3}^{*}-convexity, itself, in Section 3 we show that the mentioned parameters are all NP-hard. In fact, we show that the convexity number for the P_{3}-convexity is NP-hard even for bipartite graphs with diameter 3 and that the hull number for the P_{3}-convexity is NP-hard even for subgraphs of grids. Moreover, we obtain linear time algorithms for some graph classes in Section 6. In the next section, we give some useful definitions.

2. Definitions

Let G be a simple finite graph, with vertex set $V(G)$ and \mathcal{C} a family of subsets of $V(G)$. The pair (G, \mathcal{C}) is a graph convexity, when $\emptyset \in \mathcal{C}, V(G) \in \mathcal{C}$ and, if $S_{1}, S_{2} \in \mathcal{C}$, then $S_{1} \cap S_{2} \in \mathcal{C}$. The subsets $C \in \mathcal{C}$ are called convex sets. We say that a set is co-convex if its complement is convex. The convex hull of a subset $S \subseteq V(G)$ with respect of a graph G and a convexity \mathcal{C}, denoted by $H_{\mathcal{C}, G}(S)$, is the smallest convex set which contains S. When the convexity and graph being considered are clear from the context, we will omit the subscript. If $H(S)=V(G)$, we say that S is a hull set.

Given a subset $S \subseteq V(G)$, let $I(S)$ be the set with the vertices in S and all vertices in a certain type of path between two vertices of S and let $I^{k}(\cdot)$ be the k th iterate of $I(\cdot)$, i.e., $I^{0}(S)=S$ and $I^{k}(S)=I\left(I^{k-1}(S)\right)$ for $k \geq 1$. The kind of path considered for $I(\cdot)$ is defined by the convexity being considered. In this paper we are concerned with paths of order 3, corresponding to the P_{3}-convexity, induced paths of order 3, corresponding to the P_{3}^{*}-convexity, and shortest paths, corresponding to the geodesic convexity or simply g-convexity. If $I(S)=V(G)$, we say that S is an interval set.

Let \mathcal{C} be a graph convexity. Next, we describe some graph parameters relative to the \mathcal{C}-convexity. The hull number $h_{\mathcal{C}}(G)$ of G is the size of a minimum hull set. The interval number $n_{\mathcal{C}}(G)$ is the size of a minimum interval set. The convexity number $c x_{\mathcal{C}}(G)$ is the size of the maximum convex set distinct from $V(G)$. The Radon number $r_{\mathcal{C}}(G)$ is the minimum k such that every subset V^{\prime} of $V(G)$ of size at least k has a partition $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ such that $H\left(V_{1}^{\prime}\right) \cap H\left(V_{2}^{\prime}\right) \neq \emptyset$.

The percolation time $t_{\mathcal{C}, G}(S)$ of a set S of vertices is the minimum k such that $I^{k}(S)=I^{k+1}(S)$. The percolation time $t_{\mathcal{C}}(G)$ is the maximum percolation time $t_{\mathcal{C}, G}(S)$ among all hull sets S of G.

The Carathéodory number $c_{\mathcal{C}}(G)$ is the smallest integer c such that for every set S and every vertex $u \in H(S)$, there is a set $F \subseteq S$ with $|F| \leq c$ and $u \in H(F)$. Alternatively, the Carathéodory number $c_{\mathcal{C}}(G)$ is the size of the maximum Carathéodory set, where we say that a set $S \subseteq V(G)$ is a Carathéodory set if $\partial H(S)=H(S) \backslash \bigcup_{s \in S} H(S \backslash\{s\}) \neq \emptyset$.

Throughout the text, when the convexity and the graph being considered are clear from context we will omit the subscripts. Otherwise, we will use the subscripts P_{3}, P_{3}^{*} or g (for the g-convexity). For example, if $S \subseteq V\left(G_{1}\right) \subseteq V\left(G_{2}\right)$, then $H_{g, G_{1}}(S)$ and $t_{P_{3}, G_{2}}(S)$ are respectively the g-convex hull of S in G_{1} and the P_{3} percolation time of S in G_{2}.

3. NP-hardness results for the hull number

In this section we establish NP-hardness results for various convexity parameters related to the P_{3} - and P_{3}^{*}-convexities. Observe that, in triangle-free graphs, the P_{3}^{*}-convexity is identical to the P_{3}-convexity, since every path of length 2 is induced. Since from $[2,18,5,12]$ the P_{3}-Carathéodory number, the P_{3}-Radon number, the P_{3}-percolation time and the P_{3}-interval number are NP-hard on bipartite graphs, we have directly that:

Theorem 1. The problems of finding the Carathéodory number, the Radon number, the interval number and the percolation time are NP-hard on bipartite graphs for the P_{3}^{*}-convexity.

In 2011, Centeno et al. [4] proved that the problem of finding the hull number is NP-hard for the P_{3}-convexity. We extend this result for planar bipartite graphs with maximum degree $\Delta \leq 4$.

Theorem 2. The problem of finding the hull number is NP-hard even on planar bipartite graphs with maximum degree $\Delta \leq 4$ for the P_{3} - and P_{3}^{*} - convexities.

Proof. We obtain a reduction from Planar 3- SAT with restrictions. Given a set $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ of clauses as an instance of SAT, the underlying graph of \mathcal{C} is a graph which has one vertex for each literal (which is a variable or the complement of a variable), has one vertex for each clause, has an edge between each literal vertex and its corresponding complement and has an edge between a literal vertex and a clause vertex if and only if the corresponding clause contains the corresponding literal. If the underlying graph of \mathcal{C} is planar, we say that \mathcal{C} is a planar formula. We say that \mathcal{C} is a restricted formula if each clause has at most three literals, each variable appears in at most three clauses and every literal of the form \bar{x}, where x is a variable, appears in exactly one clause. We prove a reduction from PLANAR 3- SAT, which is known to be NP-complete [17], even for restricted planar formulae (see the proof of Theorem 2a in [7]).

Restricted Planar 3- SAT

Input: A SAT restricted planar formula \mathcal{C} on variables of a set X.
Question: Is there a truth assignment to X that satisfies all clauses of \mathcal{C} ?
Given a restricted planar formula \mathcal{C} with k variables and m clauses, we construct a bipartite graph G such that \mathcal{C} is satisfiable if and only if the P_{3}-hull number of G is $12 k+m$. The variable gadget related to any variable is shown in Fig. 1. The clause

https://daneshyari.com/en/article/6871461

Download Persian Version:

https://daneshyari.com/article/6871461

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rafaelteixeira@lia.ufc.br (R.T. Araújo), rudini@lia.ufc.br (R.M. Sampaio), viniciussantos@dcc.ufmg.br (V.F. dos Santos), jayme@nce.ufrj.br (J.L. Szwarcfiter).

