[Discrete Applied Mathematics](https://doi.org/10.1016/j.dam.2017.11.038) (IIII)

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The matcher game played in graphs

Wayne Goddard ^{[a,](#page-0-0)[b,](#page-0-1)}[*](#page-0-2), Michael A. Henning ^{[b](#page-0-1)}

a *School of Computing & Department of Mathematical Sciences, Clemson University, Clemson SC, USA*

^b *Department of Pure and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa*

a r t i c l e i n f o

Article history: Received 15 August 2017 Received in revised form 7 November 2017 Accepted 30 November 2017 Available online xxxx

MSC: 05C65 05C69

Keywords: Matcher game Matching

A B S T R A C T

We study a game played on a graph by two players, named Maximizer and Minimizer. Each round two new vertices are chosen; first Maximizer chooses a vertex *u* that has at least one unchosen neighbor and then Minimizer chooses a neighbor of *u*. This process eventually produces a maximal matching of the graph. Maximizer tries to maximize the number of edges chosen, while Minimizer tries to minimize it. The matcher number $\alpha_g'(G)$ of a graph *G* is the number of edges chosen when both players play optimally. In this paper it is proved that $\alpha'_g(G) \geq \frac{2}{3}\alpha'(G)$, where $\alpha'(G)$ denotes the matching number of graph *G*, and this bound is tight. Further, if *G* is bipartite, then $\alpha'_g(G) = \alpha'(G)$. We also provide some results on graphs of large odd girth and on dense graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we introduce the *matcher game*. This is played on a graph *G* by two players, called *Maximizer* and *Minimizer*, who take turns in constructing a matching of *G*. Each round, one player chooses a vertex *uⁱ* with at least one neighbor not previously chosen, and the other player chooses a vertex v_i not previously chosen that is a neighbor of u_i . This process continues until no more play is possible; that is, the edges u_iv_i form a maximal matching of G . Maximizer wishes to maximize the number of edges in this matching, while Minimizer wishes to minimize it. The Max-start matcher number $\alpha_g'(G)$ of G is the number of edges in the matching when Maximizer starts and both players play optimally, while the *Min-start matcher* n umber $\hat{\alpha}_{g}'(G)$ of G is the number of edges chosen when Minimizer starts and both players play optimally.

The matcher game is related to the growing family of *competition parameters* or *competitive optimization games* on graphs and hypergraphs. For example, Phillips and Slater [\[12\]](#page--1-0) introduced a game where two players alternate add vertices of *G* to an independent set until it becomes a maximal independent set. One player wants the final set to be large; the other wants it to be small. More recently, Cranston et al. [\[6\]](#page--1-1) introduced a game where the players alternate adding edges of *G* to a matching until it becomes a maximal matching. Theirs is equivalent to the game of [\[12\]](#page--1-0) played on the line graph and is a very different game to ours. Probably the best-known such parameter is the *game chromatic number*, which was introduced by Brams for planar graphs (cf. [\[8\]](#page--1-2)) and independently by Bodlaender [\[1\]](#page--1-3) for general graphs, and for list colorings by Borowiecki et al. [\[2\]](#page--1-4). There is also work on domination $[3,9,10]$ $[3,9,10]$ $[3,9,10]$, transversals in hypergraphs $[4,5]$ $[4,5]$ and more.

We denote the matching number of graph *G* by $\alpha'(G)$, and define the *lower matching number* $\alpha'_L(G)$ as the minimum cardinality of a maximal matching of *G*. Trivially the values of our game are sandwiched between $\alpha'_L(G)$ and $\alpha'(G)$. If these two values are equal – that is, the graph is *equimatchable* – then the value of the game is determined. But in general, for the case that Maximizer starts, the value can lie between these two bounds.

<https://doi.org/10.1016/j.dam.2017.11.038> 0166-218X/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: School of Computing & Department of Mathematical Sciences, Clemson University, Clemson SC, USA. *E-mail addresses:* goddard@clemson.edu (W. Goddard), mahenning@uj.ac.za (M.A. Henning).

2 *W. Goddard, M.A. Henning / Discrete Applied Mathematics () –*

In this paper, we will observe that the Min-start matcher number is uninteresting, as it always equals the ordinary matching number. Thus the focus is on the Max-start matcher number which we simply call the *matcher number*. There we show that, while for bipartite graphs the matcher number equals the matching number, in general $\alpha'_g(G) \geq \frac{2}{3}\alpha'(G)$, and we characterize the graphs *G* for which $\alpha'_g(G) = \frac{2}{3}\alpha'(G)$. We also investigate the relationship with the lower matching number, showing that $\alpha'_g(G)\geq 2\alpha'(G)-2\alpha'_L(\tilde{G})$. We conclude with some sufficient conditions for $\alpha'_g(G)$ to be half the order.

1.1. Definition list

For notation and graph-theory terminology not defined herein, we in general follow [\[11\]](#page--1-10). We denote the *degree* of a vertex v in a graph *G* by *d*(v). The minimum degree among the vertices of *G* is denoted by δ(*G*). A *matching M* is a set of edges in *G* no two of which are adjacent; it is *perfect* if every vertex of *G* is incident to an edge of *M*. If *M* is a matching in *G*, then a vertex is *M*-*matched* or *covered by M* if it is incident with an edge of *M*; otherwise, the vertex is *M*-*unmatched*. A path or cycle is *M*-*alternating* of its edges are alternately in and not in *M*.

2. The min-start game

We start by showing that the Min-start matcher number of a graph is precisely the matching number of the graph. We shall need the following trivial well-known preliminary lemma.

Lemma 1. *If G is a graph, then every non-isolated vertex is incident with an edge that belongs to some maximum matching of G.*

Proof. Suppose that *M* is a maximum matching and vertex *u* is *M*-unmatched but has a neighbor w. Then w is *M*-matched; say *f* is the edge of *M* incident with w. Then $(M \setminus \{f\}) \cup \{uw\}$ is a maximum matching in *G* containing an edge incident with u . \square

Theorem 1. For every graph G, we have $\hat{\alpha}'_g(G) = \alpha'(G)$.

Proof. We show that Maximizer has a strategy that guarantees that the Min-start matcher game always finishes with a maximum matching, implying that $\hat{\alpha}'_g(G) = \alpha'(G)$. Suppose that Minimizer chooses vertex *u*. By [Lemma 1,](#page-1-0) the vertex *u* is incident with an edge, say *u*v, that belongs to some maximum matching, *M* say, in *G*. So Maximizer chooses vertex v. Then let $G' = G - \{u, v\}$. Note that $\alpha'(G') = \alpha'(G) - 1$, while by induction we have $\alpha'_{g}(G') = \alpha'(G')$. The result follows. \Box

3. Basics of the max-start game

For the remainder of the paper we study the Max-start matcher game. Here is an example:

Lemma 2. For the path P_n with $n \ge 1$ it holds that $\alpha'_g(P_n) = \lfloor n/2 \rfloor$. For the cycle C_n with $n \ge 3$ it holds that $\alpha'_g(C_n) = \lfloor n/2 \rfloor$.

Proof. The stated value is the matching number of the graphs. So it suffices to show that Maximizer can force a maximum matching. For the path, Maximizer starts with an end-vertex, and then repeatedly chooses a vertex adjacent to one that has already been matched. For the cycle, the result follows by the same strategy. \Box

The above case is an example where the matcher number equals the matching number. For an example where these two numbers are different, let *G* be the graph formed by taking two disjoint copies of the complete graph K_m , for odd $m \geq 3$, and adding one edge between the cliques. Then no matter which vertex Maximizer chooses first, Minimizer can ensure that exactly one cut-vertex is chosen; the removal of the first two chosen vertices leaves two cliques of odd order. Thus $\alpha'_{g}(G) = m - 1$ while $\alpha'(G) = m$.

Another case where the matcher and matching numbers are different is the following:

 L emma 3. If G is a graph with minimum degree at least two that contains a unique maximum matching, then $\alpha_g'(G)<\alpha'(G)$.

Proof. Let *M* be the unique maximum matching in *G*. By [Lemma 1,](#page-1-0) every vertex is incident with *M*; that is, *M* is a perfect matching. Let *u* be the first vertex chosen by Maximizer. Since *u* has degree at least two, Minimizer can respond by choosing a vertex v such that *u*v is not in *M*; thus the maximal matching that is constructed will not be *M*. It follows that $\alpha_g^{\prime}(G) < \alpha^{\prime}(G)$. \Box

A useful concept is the following. We define a vertex v of a graph *G* as *liberal* if it is not isolated and every edge incident with v belongs to some maximum matching in *G*. The usefulness of the idea can be expressed in the following observation. Recall that a family of graphs is *hereditary* if it is closed under vertex removal.

Lemma 4. *Let* G *be a hereditary graph family such that every nonempty graph in* G *has a liberal vertex. Then for all G* ∈ G *it holds that* $\alpha'_g(G) = \alpha'(G)$ *.*

Please cite this article in press as: W. Goddard, M.A. Henning, The matcher game played in graphs, Discrete Applied Mathematics (2017), https://doi.org/10.1016/j.dam.2017.11.038.

Download English Version:

<https://daneshyari.com/en/article/6871470>

Download Persian Version:

<https://daneshyari.com/article/6871470>

[Daneshyari.com](https://daneshyari.com)