Neighbor sum distinguishing total coloring and list neighbor sum distinguishing total coloring

You Lu ${ }^{\text {a }}$, Miaomiao Han ${ }^{\text {b }}$, Rong Luo ${ }^{\text {c,* }}$
a Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
c School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China

ARTICLE INFO

Article history:

Received 9 March 2015
Received in revised form 3 December 2017
Accepted 4 December 2017
Available online xxxx

Keywords:

Neighbor sum distinguishing total coloring
ℓ-degenerate
Coloring number
Maximum degree

Abstract

Let $\chi_{\Sigma}^{t}(G)$ and $\chi_{\Sigma}^{l t}(G)$ be the neighbor sum distinguishing total chromatic and total choice numbers of a graph G, respectively. In this paper, we present some new upper bounds of $\chi_{\Sigma}^{l t}(G)$ for ℓ-degenerate graphs with integer $\ell \geq 1$, and of $\chi_{\Sigma}^{t}(G)$ for 2-degenerate graphs. As applications of these results, (i) for a general graph $G, \chi_{\Sigma}^{t}(G) \leq \chi_{\Sigma}^{l t}(G) \leq$ $\max \left\{\Delta(G)+\left\lfloor\frac{3 \operatorname{col}(G)}{2}\right\rfloor-1,3 \operatorname{col}(G)-2\right\}$, where $\operatorname{col}(G)$ is the coloring number of G; (ii) for a 2-degenerate graph G, we determine the exact value of $\chi_{\Sigma}^{t}(G)$ if $\Delta(G) \geq 6$ and show that $\chi_{\Sigma}^{t}(G) \leq 7$ if $\Delta(G) \leq 5$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For terminology and notations not defined here we follow [3]. Let $G=(V, E)$ be a simple graph and $\phi: V \cup E \rightarrow[k]$ be a total-[k]-weighting where $[k]=\{1, \ldots, k\} . \phi$ is a neighbor sum distinguishing total-[k]-weighting (abbreviated as NSD total-[k]-weighting) if $\phi(u)+\sum_{e \in E(u)} \phi(e) \neq \phi(v)+\sum_{e \in E(v)} \phi(e)$ for each edge $u v \in E$, where $E(x)$ is the set of edges incident with x for a vertex x. The NSD total weighting problem was introduced by Przybyło and Woźniak [18] as a variation of a similar problem for edge weighting introduced by Karoński, Łuczak and Thomason [12]. Przybyło and Woźniak [18] conjectured that every graph has an NSD total-[2]-weighting while Karoński, Łuczak and Thomason [12] conjectured that every graph without isolated edges has an NSD edge-[3]-weighting. Those two conjectures are known as the 1-2 Conjecture and the 1-2-3 Conjecture, respectively. Kalkowski, Karoński and Pfender [11] showed that every connected graph with at least three vertices has an NSD edge-[5]-weighting. Kalkowski [10] showed that every graph has an NSD total-[3]-weighting. The readers are referred to a survey paper [20] for more information.

Recently both NSD total weighting and NSD edge weighting have been extended to choosability version. In [2], Bartnicki et al. considered the choosability version of 1-2-3 Conjecture. A graph is said to be NSD edge- k-weight-choosable if for every list assignment L which assigns to each edge e a set $L(e)$ of k real numbers, G has an NSD edge weighting ϕ such that $\phi(e) \in L(e)$ for each edge e. Przybyło and Woźniak [19] and Wong and Zhu [22] independently introduced the list version of NSD total weighting. Let $L(x)$ be a list of k real numbers assigned to each element $x \in V \cup E$ of a graph G, and let L be a collection of all these lists. Such L is called a total- k-list assignment of G. We say that G has an NSD total-L-weighting if there is an NSD total weighting $\phi: V \cup E \rightarrow \cup_{L(x) \in L} L(x)$ such that $\phi(x) \in L(x)$ for each $x \in V \cup E$. A graph G is NSD total-k-weight-choosable if for each total-k-list assignment L, G has an NSD total-L-weighting. Przybyło and Woźniak [19] conjectured that the 1-2 Conjecture is also true for the list version. That is every graph is NSD total-2-weight-choosable. This conjecture was verified

[^0]for trees, cycles, and complete graphs by Przybyło [16] and Wong and Zhu [22] independently. In [23], Wong and Zhu proved that every graph is NSD total-3-weight-choosable.

The (list) edge coloring version of the problem where the edge weighting is a (list) edge coloring has been studied for recent years (see, for example, $[7-9,17,21]$). In this paper, we study the (list) total coloring version of the problem. Let $k \geq 1$ be an integer and L be a total- k-list assignment of a graph G. A total coloring ϕ is called a total- L-coloring if $\phi(x) \in L(x)$ for each $x \in V \cup E$. Such ϕ is neighbor sum distinguishing (NSD) if $\phi(u)+\sum_{e \in E(u)} \phi(e) \neq \phi(v)+\sum_{e \in E(v)} \phi(e)$ for each $u v \in E$. The NSD total choice number, denoted by $\chi_{\Sigma}^{l t}(G)$, is the smallest integer k such that for each total- k-list assignment L, G has an NSD total-L-coloring. In particular, a total-L-coloring is said to be a total-[k]-coloring if $L(x)=[k]$ for each $x \in V \cup E$. The NSD total chromatic number of G, denoted by $\chi_{\Sigma}^{t}(G)$, is the smallest integer k such that G has an NSD total-[k]-coloring. The concept of NSD total-[k]-coloring was introduced by Pilśniak and Woźniak [15], who proposed the following conjecture.

Conjecture 1.1 ([15]). For a graph G with maximum degree $\Delta, \chi_{\Sigma}^{t}(G) \leq \Delta+3$.
Pilśniak and Woźniak [15] showed that Conjecture 1.1 holds for complete graphs, bipartite graphs and graphs with maximum degree 3. Li et al. [13] proved that Conjecture 1.1 holds for planar graphs with maximum degree at least 13. Recently, Li et al. [14] proved the following result.

Theorem 1.2 ([14]). Conjecture 1.1 holds for K_{4}-minor-free graphs.
The maximum average degree of G is $\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}: H \subseteq G\right\}$. Dong and Wang [6] showed the following theorem.
Theorem 1.3 ([6]). Let G be a graph with at least two vertices. If $\operatorname{mad}(G)<3$, then $\chi_{\Sigma}^{t}(G) \leq \max \{\Delta+2,7\}$.
The coloring number of a graph G, denoted by $\operatorname{col}(G)$, is the least integer k such that G has a vertex enumeration in which each vertex is preceded by fewer than k of its neighbors. By using combinatorial nullstellensatz, Ding et al. [5] presented an upper bound of $\chi_{\Sigma}^{t}(G)$ as follows.

Theorem 1.4 ([5]). For a graph G with at least two vertices, $\chi_{\Sigma}^{t}(G) \leq 2 \Delta+\operatorname{col}(G)-1$.
In this paper, we improve the upper bound in Theorem 1.4 by proving its list version.
Theorem 1.5. For a graph G with maximum degree Δ,

$$
\chi_{\Sigma}^{t}(G) \leq \chi_{\Sigma}^{l t}(G) \leq\left\{\begin{array}{l}
\max \left\{\Delta+\left\lfloor\frac{3 \operatorname{col}(G)}{2}\right\rfloor-1,3 \operatorname{col}(G)-2\right\}, \text { if } \operatorname{col}(G) \leq 3 \\
\max \left\{\Delta+\left\lfloor\frac{3 \operatorname{col}(G)}{2}\right\rfloor-2,3 \operatorname{col}(G)-2\right\}, \text { if } \operatorname{col}(G) \geq 4
\end{array}\right.
$$

For a positive integer ℓ, G is ℓ-degenerate if every subgraph of G contains a vertex of degree at most ℓ. Note that every graph G is $(\operatorname{col}(G)-1)$-degenerate. For a 2 -degenerate graph G, we determine the exact value of $\chi_{\Sigma}^{t}(G)$ when $\Delta \geq 6$.

Theorem 1.6. Let G be a 2-degenerate graph with maximum degree Δ. Then
(1) If $\Delta \leq 5$, then $\chi_{\Sigma}^{t}(G) \leq 7$.
(2) If $\Delta \geq 6$, then

$$
\chi_{\Sigma}^{t}(G)=\left\{\begin{array}{l}
\Delta+1, \text { if } G \text { contains no two adjacent } \Delta \text {-vertices } ; \\
\Delta+2, \text { otherwise } .
\end{array}\right.
$$

Note that trees, K_{4}-minor-free graphs, parallel series graphs, planar graphs with girth at least 6 and graphs with $\operatorname{mad}(G)<$ 3 are all 2-degenerate. Therefore, Theorem 1.6 implies Theorems 1.2 and 1.3.

Theorem 1.5 is a direct corollary of Theorem 1.7 on ℓ-degenerate graphs.
Theorem 1.7. Let $\ell \geq 1$ be an integer and G be an ℓ-degenerate graph with maximum degree Δ. Then

$$
\chi_{\Sigma}^{l t}(G) \leq\left\{\begin{array}{l}
\max \left\{\Delta+\left\lfloor\frac{3 \ell+1}{2}\right\rfloor, 3 \ell+1\right\}, \text { if } \ell \leq 2 \\
\max \left\{\Delta+\left\lfloor\frac{3 \ell-1}{2}\right\rfloor, 3 \ell+1\right\}, \text { if } \ell \geq 3
\end{array}\right.
$$

We believe that the list version of Conjecture 1.1 is also true.
Conjecture 1.8. For a graph G with maximum degree $\Delta, \chi_{\Sigma}^{l t}(G) \leq \Delta+3$.
Theorem 1.7 implies that Conjecture 1.8 is true for 2-degenerate graphs with $\Delta \geq 4$. Note that if $\Delta=1$ then $\chi_{\Sigma}^{t}(G)=\chi_{\Sigma}^{l t}(G)=3$, and if G contains two adjacent Δ-vertices then $\chi_{\Sigma}^{l t}(G) \geq \chi_{\Sigma}^{t}(G) \geq \Delta+\overline{2}$. Since all trees are 1-degenerate, by Theorem 1.7, we have the following corollary.

https://daneshyari.com/en/article/6871479

Download Persian Version:
https://daneshyari.com/article/6871479

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: luyou@nwpu.edu.cn (Y. Lu), mahan@mix.wvu.edu (M. Han), rluo@math.wvu.edu (R. Luo).

