ARTICLE IN PRESS

Discrete Applied Mathematics [(]]] ...

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the secure domination numbers of maximal outerplanar graphs

Toru Araki*, Issei Yumoto

Division of Electronics and Informatics, Gunma University, Kiryu, Gunma 376-8515, Japan

ARTICLE INFO

Article history: Received 28 December 2016 Received in revised form 19 July 2017 Accepted 13 October 2017 Available online xxxx

Keywords: Secure domination Maximal outerplanar graphs Upper bound Lower bound

ABSTRACT

A subset *S* of vertices in a graph *G* is a secure dominating set of *G* if *S* is a dominating set of *G* and, for each vertex $u \notin S$, there is a vertex $v \in S$ such that uv is an edge and $(S \setminus \{v\}) \cup \{u\}$ is also a dominating set of *G*. We show that if *G* is a maximal outerplane graph of *n* vertices, then *G* has a secure dominating set of size at most $\lceil 3n/7 \rceil$. Moreover, if a maximal outerplane graph *G* has no internal triangles, it has a secure dominating set of size at most $\lceil n/3 \rceil$. Finally, we show that any secure dominating set of a maximal outerplane graph without internal triangles has more than n/4 vertices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let *G* be a simple graph. The vertex set and edge set of *G* are denoted by V(G) and E(G), respectively. The *open neighborhood* of a vertex $v \in V(G)$ is defined by $N_G(v) = \{u \mid vu \in E(G)\}$, and the *closed neighborhood* of v is $N_G[v] = N(u) \cup \{v\}$. We denote by $\deg_G v = |N_G(v)|$ the degree of v. The minimum degree of *G* is denoted by $\delta(G)$. For a subset $U \subseteq V(G)$, the subgraph induced by *U* is denoted by G[U]. For a proper subset $U \subset V(G)$, we denote by G - U the graph obtained by removing vertices in *U* and their incident edges.

A vertex v is said to *dominate* itself and each vertex in $N_G(v)$, that is, v dominates the vertices in $N_G[v]$. A set $S \subseteq V(G)$ is a *dominating set* of G if each vertex $u \in V(G) \setminus S$ is adjacent to some vertex in S. The *domination number* $\gamma(G)$ of G is the smallest cardinality of a dominating set of G. Let S be a dominating set of G. A vertex $v \in S$ is said to *defend* $u \notin S$ if $uv \in E(G)$ and $S' = (S \setminus \{v\}) \cup \{u\}$ is also a dominating set. A dominating set S is a secure *dominating set* (or an SDS) if, for every $u \in V(G) \setminus S$, there exists a vertex $v \in S$ such that v defends u. The secure domination number $\gamma_S(G)$ of G is the smallest cardinality of a secure dominating set of G.

The notion of secure domination has been researched extensively. Cockayne et al. [7] investigated some fundamental properties of an SDS, and obtained exact values of $\gamma_s(G)$ for some graph classes, such as paths, cycles, complete multipartite graphs. Furthermore, various aspects of secure domination have been researched in [3,4,6,10,12,13,15–17]. The secure domination problem is NP-hard even when restricted to bipartite graphs and split graphs [15]. Burger, de Villiers, and van Vuuren proposed two exponential-time algorithms (a branch-and-bound algorithm and a branch-and-reduce algorithm) for finding a minimum SDS of an arbitrary graph [1]. Burger, de Villiers and van Vuuren [2] showed that the secure domination number of a tree is computed in linear time.

A graph *G* is *outerplanar* if it has embedding in the plane such that all vertices belong to the boundary of its outer face (the unbounded face). An outerplanar graph *G* is *maximal* if G + uv is not outerplanar for any two nonadjacent vertices *u* and *v*.

* Corresponding author. E-mail address: arakit@gunma-u.ac.jp (T. Araki).

https://doi.org/10.1016/j.dam.2017.10.020 0166-218X/© 2017 Elsevier B.V. All rights reserved.

2

ARTICLE IN PRESS

T. Araki, I. Yumoto / Discrete Applied Mathematics 🛛 (💵 🖿) 💵 – 💵

Matheson and Tarjan [11] proved a tight upper bound for the domination number on the class of *triangulated disks*: graphs that have an embedding in the plane such that all of their faces are triangles, except possibly one. They proved that $\gamma(G) \leq n/3$ for any *n*-vertex triangulated disk, and also showed that this bound is tight. For maximal outerplanar graphs, better upper bounds are obtained. Campos and Wakabayashi [5] showed that if *G* is a maximal outerplanar graph of *n* vertices, then $\gamma(G) \leq (n+k)/4$ where *k* is the number of vertices of degree 2. Tokunaga proved the same result independently in [18]. Li, Zhu, Shao and Xu improved the result by showing that $\gamma(G) \leq (n + k)/4$, where *k* is the number of consecutive degree 2 vertices with distance at least 3 on the outer cycle. It was investigated the *total domination* for maximal outerplanar graphs in [8,9].

In this paper, we consider the secure domination for maximal outerplanar graphs, and prove simple upper bounds for $\gamma_s(G)$, and these bounds are tight. Then, we also show a lower bound for $\gamma_s(G)$ when an outerplanar graph has an embedding such that it does not have internal triangles.

2. Secure domination

Let *S* be a dominating set of *G*, and $u \in V(G) \setminus S$. For a vertex $v \in S$, a vertex *u* is an *external private neighbor of v* with *respect to S* if $N(u) \cap S = \{v\}$. We denote by $epn_G(v, S)$ the set of all external private neighbors of *v* with respect to *S*. Cockayne et al. [7] proved a fundamental property of a secure dominating set.

Theorem 2.1 ([7]). Let S be a dominating set of G. A vertex $v \in S$ defends $u \in V(G) \setminus S$ if and only if $G[epn_G(v, S) \cup \{u, v\}]$ is complete.

The next proposition was given in [3].

Proposition 2.2 ([3]). If G is a connected graph with minimum degree at least 2, there exists a minimum secure dominating set S of G such that every $v \in S$ defends some vertex.

Upper bounds for the secure domination number of general graphs have been obtained. Burger, Henning and van Vuuren [4] provided an upper bound for a graph *G* with $\delta(G) \ge 2$.

Theorem 2.3 ([4]). If G is a connected graph with $\delta(G) \ge 2$ that is not isomorphic to a cycle of length 5, then $\gamma_s(G) \le n/2$.

A set $S \subseteq V(G)$ is *independent* if no two vertices in *S* are adjacent. The maximum cardinality of an independent set of *G* is the *independence number* $\beta_0(G)$ of *G*. Merouane and Chellali [15] proved a sharp upper bound for $\gamma_s(G)$.

Theorem 2.4 ([15]). *For any graph* G, $\gamma_s(G) \le \gamma(G) + \beta_0(G) - 1$.

For paths and cycles, the exact values of the secure domination numbers are known [7].

Theorem 2.5 ([7]). For any path P_n of *n* vertices, $\gamma_s(P_n) = \lceil 3n/7 \rceil$.

Theorem 2.6 ([7]). For any cycle C_n of n vertices, $\gamma_s(C_3) = 1$ and $\gamma_s(C_n) = \lceil 3n/7 \rceil$ for $n \ge 4$.

Recently, Li, Shao, and Xu [13] showed a sharp bounds for trees. A *leaf* is a vertex of degree 1, and a *stem* is a vertex adjacent to a leaf.

Theorem 2.7 ([13]). For any tree T of $n \ge 3$ vertices,

$$\frac{n+2}{2} \leq \gamma_s(T) \leq \frac{2n+2\ell-t}{2}$$

and the bounds are sharp, where ℓ and t are the numbers of leaves and stems of T, respectively.

3. Upper bound for maximal outerplanar graphs

A maximal outerplanar graph G can be embedded in the plane such that the boundary of the outer face is a Hamiltonian cycle and each inner face is a triangle. A maximal outerplanar graph embedded in the plane is called a *maximal outerplane graph*. For such an embedding of G, we denote by H_G the (unique) Hamiltonian cycle which is boundary of the outer face. An inner face of a maximal outerplane graph G is an *internal triangle* if it is not adjacent to outer face. A maximal outerplane graph without internal triangles is called *stripped*.

Since any maximal outerplane graph has a Hamiltonian cycle, we obtain an upper bound from Theorem 2.6.

Theorem 3.1. For any maximal outerplane graph *G* with $n \ge 3$ vertices, $\gamma_s(G) \le \lceil 3n/7 \rceil$.

We show that there exist infinitely many maximal outerplane graphs achieve the upper bound. Let G denote the family of all maximal outerplane graphs G that satisfy the following conditions.

Please cite this article in press as: T. Araki, I. Yumoto, On the secure domination numbers of maximal outerplanar graphs, Discrete Applied Mathematics (2017), https://doi.org/10.1016/j.dam.2017.10.020.

Download English Version:

https://daneshyari.com/en/article/6871501

Download Persian Version:

https://daneshyari.com/article/6871501

Daneshyari.com