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a b s t r a c t

AgraphG is said to be k-distinguishable if every vertex of the graph canbe colored froma set
of k colors such that no non-trivial automorphism fixes every color class. The distinguishing
number D(G) is the least integer k for which G is k-distinguishable. If for each v ∈ V (G) we
have a list L(v) of colors, andwe stipulate that the color assigned to vertex v comes from its
list L(v) thenG is said to beL-distinguishablewhereL = {L(v)}v∈V (G). The list distinguishing
number of a graph, denoted Dl(G), is the minimum integer k such that every collection of
lists L with |L(v)| = k admits an L-distinguishing coloring. In this paper, we prove that
Dl(G) = D(G) when G is a Kneser graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph and let Aut(G) denote the full automorphism group of G. By an r-vertex coloring of G, we shall mean
a map f : V (G) → {1, 2, . . . , r}, and the sets f −1(i) for i ∈ {1, 2 . . . , r} shall be referred to as the color classes of f . An
automorphism σ ∈ Aut(G) is said to fix a color class C of f if σ (C) = C , where σ (C) = {σ (v) : v ∈ C}. A vertex coloring
of the graph G with the property that no non-trivial automorphism of G fixes all the color classes is called a distinguishing
coloring of the graph G.

Albertson and Collins [2] defined the distinguishing number of graph G, denoted D(G), as the minimum r such that G
admits a distinguishing r-vertex coloring.

An interesting variant of the distinguishing number of a graph, due to Ferrara, Flesch, and Gethner [5] goes as follows.
Given an assignment L = {L(v)}v∈V (G) of lists of available colors to vertices of G, we say that G is L-distinguishable if there
is a distinguishing coloring f of G such that f (v) ∈ L(v) for all v. The list distinguishing number of G, denoted Dl(G), is the
minimum integer k such that G is L-distinguishable for any list assignment Lwith |L(v)| = k for all v. The list distinguishing
number has generated a bit of interest recently (see [5,6,8] for some relevant results) primarily due to the following question
that appears in [5]:

IsDl(G) = D(G) for all graphs G?

As they state themselves, one of the authors of [5] believes this to be the case, while another author was more circumspect
about the same. The authors of [5] prove the same for cycles of size at least 6, cartesian products of cycles, and for graphs
whose automorphism group is a dihedral group D2n. The paper [6] settles this question in the affirmative for trees, and [8]
establishes it for interval graphs.

Let r ≥ 2, and n ≥ 2r+1. The Kneser graph K (n, r) is defined as follows: The vertex set of K (n, r) consists of all r-element
subsets of [n]; vertices u, v in K (n, r) are adjacent if and only if u ∩ v = ∅. The distinguishing number of the Kneser graphs
is well known (see [2,1]): D(K (n, r)) = 2 when n ̸= 5 and r ≥ 2; for Petersen graph D(K (5, 2)) = 3.

Our main result in this paper settles the aforementioned question in the affirmative for the family of Kneser graphs.
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Theorem 1. Dl(K (n, r)) = D(K (n, r)) for all r ≥ 2, n ≥ 2r + 1.

Before we proceed to the proof of the theorem, we describe the main idea of the proof. We choose randomly (uniformly)
and independently for each vertex v, a color from its list L(v), and we calculate/bound the expected number of non-trivial
automorphisms that fix every color class for this random set of choices. This line of argument features in some other related
contexts, for e.g., [3,4,9,11] most notably under the umbrella of what is called the ‘Motion Lemma’, and some of its variants.
For r = 2, the cases 8 ≤ n ≤ 22 include some explicit computation using a SAGE code. These methods however do not work
in the case r = 2 and n = 6 or n = 7, so we need different arguments to settle this case. As it turns out, the case with r ≥ 3
is simpler than the case r = 2.

The rest of the paper is organized as follows. In the next couple of sections, we detail the proof for r = 2. The case r ≥ 3 is
considered in Section 4. We conclude with a few remarks and a conjecture in the final section. We also include an Appendix
that provides the details of the SAGE code and related calculations that settle the proof for r = 2, 8 ≤ n ≤ 22.

2. List distinguishing number of K (n, 2) when n ≥ 8

As mentioned in the introduction, the distinguishing number of Kneser graphs is known [1]:

Theorem 2. D(K (n, 2)) = 2 for n ≥ 6, and D(K (5, 2)) = 3.

Let Sn denote the symmetric group on n symbols. Observe that every permutation σ ∈ Sn induces an automorphism of
K (n, r) as follows: If v = {i1, i2, . . . , ir}, then σ (v) := {σ (i1), σ (i2), . . . , σ (ir )}. Hence Sn is contained in the full automorphism
group ofK (n, r). If n ≥ 2r+1, it is awell known consequence (see [7], Lemma7.8.2, pg. 147 for instance) of the Erdős-Ko-Rado
theorem that Sn is in fact the full automorphism group of K (n, r).

Note that the Kneser graphK (n, 2) is the complement of the line graph ofKn, so a list distinguishing coloring of the vertices
of K (n, 2) is easier to understand as a coloring of the edges of Kn. It is also quite straightforward to see that D(K (n, 2)) = 2
for n ≥ 6. Indeed, for each n ≥ 6, there exists a graph on n vertices with a trivial automorphism group. Fix such a graph G,
color the edges of G red (say), and color the remaining edges of Kn blue (say). If σ ∈ Sn is an automorphism of K (n, 2) that
fixes both these color classes, then in particular, σ also acts as an automorphism of G as well as its complement G. But this
implies that σ is the identity map. The same argument also extends to the Kneser graph K (n, 3) for r ≥ 3. However, this
argument fails when the color of each vertex of K (n, r) has to be an element of the list of colors assigned to v.

Suppose n ≥ 6 and suppose {L(e)}e∈E(Kn) is a collection of lists of colors of size 2 for the edges of Kn. For each edge of Kn
we choose a color uniformly and independently at random from its given list of colors. We shall refer to this as the random
coloring of K (n, r) in the rest of the paper. As mentioned in the introduction, we seek to compute the expected number of
non-trivial automorphisms that fix all the colors class of this random coloring.

First, we set up some notations.

a. If the disjoint cycle decomposition of a permutation σ ∈ Sn consists of li cycles of length λi, for i = 1, 2, . . . , t with
λ1 < λ2 < · · · < λt , then we say σ is of type Λ where Λ := (λl1

1 , λ
l2
2 , . . . , λ

lt
t ). Note that

∑
i liλi = n.

b. CT (n) shall denote the set of all permutation types in Sn, i.e.,

CT (n)
:= {(λl1

1 , λ
l2
2 , . . . , λ

lt
t ) with

∑
i

liλi = n and λ1 < λ2 < · · · < λt}.

c. CT (n)
≥r , CT

(n)
r shall denote the sets of all permutation types with minimum cycle length at least r , and with minimum

cycle length exactly r , respectively.
d. For positive integers a, b, we shall denote by (a, b) the g.c.d. of a and b.
e. g(x) :=

⌊
(x−1)2

2

⌋
and g(x, y) := xy − (x, y). Here, the functions g(x) and g(x, y) are defined for non-negative integers

x, y.

First, observe that if a non-trivial automorphism σ fixes each of the color classes (as sets) in the random coloring of E(Kn),
then every edge in the orbit of an edge e ∈ E(Kn) under the action of σ must be assigned the same color. In particular, one
can compute an upper bound for the probability that σ preserves every color class as a function of the permutation type
of σ .

Our current goal is the following: For a non-trivial σ ∈ Sn, we seek an upper bound P(σ ) on the probability that σ fixes
all the color classes (as sets) in the random coloring. We then set P(Λ) :=

∑
σ of type Λ P(σ ).

Lemma 3. Let σ ∈ Sn be a non-trivial permutation of type Λ = (λl1
1 , λ

l2
2 , . . . , λ

lt
t ). Furthermore, for i ≤ j let l∗j (i) := li(li − 1)/2

when i = j and l∗j (i) = lilj for all j > i. Then the probability that σ fixes every color class in a random coloring of K (n, 2) is at
most

P(σ ) :=
1
2µ

,
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