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1. Introduction

Let G be a graph and let Aut(G) denote the full automorphism group of G. By an r-vertex coloring of G, we shall mean
amapf : V(G) — {1,2,...,r}, and the sets f~1(i) fori € {1,2...,r} shall be referred to as the color classes of f. An
automorphism o € Aut(G) is said to fix a color class C of f if 0(C) = C, where o(C) = {o(v) : v € C}. A vertex coloring
of the graph G with the property that no non-trivial automorphism of G fixes all the color classes is called a distinguishing
coloring of the graph G.

Albertson and Collins [2] defined the distinguishing number of graph G, denoted D(G), as the minimum r such that G
admits a distinguishing r-vertex coloring.

An interesting variant of the distinguishing number of a graph, due to Ferrara, Flesch, and Gethner [5] goes as follows.
Given an assignment £ = {L(v)},ev(c) Of lists of available colors to vertices of G, we say that G is £-distinguishable if there
is a distinguishing coloring f of G such that f(v) € L(v) for all v. The list distinguishing number of G, denoted D)(G), is the
minimum integer k such that G is £-distinguishable for any list assignment £ with |L(v)| = k for all v. The list distinguishing
number has generated a bit of interest recently (see [5,6,8] for some relevant results) primarily due to the following question
that appears in [5]:

IsD)(G) = D(G) for all graphs G?

As they state themselves, one of the authors of [5] believes this to be the case, while another author was more circumspect
about the same. The authors of [5] prove the same for cycles of size at least 6, cartesian products of cycles, and for graphs
whose automorphism group is a dihedral group D,,. The paper [6] settles this question in the affirmative for trees, and [8]
establishes it for interval graphs.

Letr > 2,and n > 2r 4 1. The Kneser graph K(n, r) is defined as follows: The vertex set of K(n, r) consists of all r-element
subsets of [n]; vertices u, v in K(n, r) are adjacent if and only if u N v = @. The distinguishing number of the Kneser graphs
is well known (see [2,1]): D(K(n, r)) = 2 whenn # 5 and r > 2; for Petersen graph D(K(5, 2)) = 3.

Our main result in this paper settles the aforementioned question in the affirmative for the family of Kneser graphs.
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Theorem 1. D(K(n, r)) = D(K(n,r)) forallr >2,n>2r + 1.

Before we proceed to the proof of the theorem, we describe the main idea of the proof. We choose randomly (uniformly)
and independently for each vertex v, a color from its list L(v), and we calculate/bound the expected number of non-trivial
automorphisms that fix every color class for this random set of choices. This line of argument features in some other related
contexts, for e.g., [3,4,9,11] most notably under the umbrella of what is called the ‘Motion Lemma’, and some of its variants.
Forr = 2, the cases 8 < n < 22 include some explicit computation using a SAGE code. These methods however do not work
in the caser = 2 and n = 6 or n = 7, so we need different arguments to settle this case. As it turns out, the case withr > 3
is simpler than the case r = 2.

The rest of the paper is organized as follows. In the next couple of sections, we detail the proof for r = 2. The caser > 3is
considered in Section 4. We conclude with a few remarks and a conjecture in the final section. We also include an Appendix
that provides the details of the SAGE code and related calculations that settle the proof forr = 2,8 < n < 22.

2. List distinguishing number of K(n, 2) whenn > 8
As mentioned in the introduction, the distinguishing number of Kneser graphs is known [1]:

Theorem 2. D(K(n, 2)) = 2 for n > 6, and D(K(5, 2)) = 3.

Let S, denote the symmetric group on n symbols. Observe that every permutation o € S, induces an automorphism of
K(n, r)asfollows: Ifv = {iq, ip, ..., i;},theno(v) := {o(i1), o(i2), ..., o(i;)}. Hence S, is contained in the full automorphism
group of K(n, r).1Ifn > 2r+-1, itis a well known consequence (see [7], Lemma 7.8.2, pg. 147 for instance) of the Erdés-Ko-Rado
theorem that S,, is in fact the full automorphism group of K(n, r).

Note that the Kneser graph K(n, 2) is the complement of the line graph of K;,, so a list distinguishing coloring of the vertices
of K(n, 2) is easier to understand as a coloring of the edges of K. It is also quite straightforward to see that D(K(n, 2)) = 2
for n > 6. Indeed, for each n > 6, there exists a graph on n vertices with a trivial automorphism group. Fix such a graph G,
color the edges of G red (say), and color the remaining edges of K, blue (say). If ¢ € S, is an automorphism of K(n, 2) that

fixes both these color classes, then in particular, o also acts as an automorphism of G as well as its complement G. But this
implies that o is the identity map. The same argument also extends to the Kneser graph K(n, 3) for r > 3. However, this
argument fails when the color of each vertex of K(n, r) has to be an element of the list of colors assigned to v.

Suppose n > 6 and suppose {L(e)}eck(k,) is a collection of lists of colors of size 2 for the edges of K,. For each edge of K,
we choose a color uniformly and independently at random from its given list of colors. We shall refer to this as the random
coloring of K(n, r) in the rest of the paper. As mentioned in the introduction, we seek to compute the expected number of
non-trivial automorphisms that fix all the colors class of this random coloring.

First, we set up some notations.

a. If the disjoint cycle decomposition of a permutation o € S, consists of I; cycles of length A;, fori = 1,2, ..., t with
A < Ay < .-+ < A, then we say o is of type A where A ;= ()»'11,)\’22, ey )Ll{ )-Note that ), [ix; = n.
b. CT™ shall denote the set of all permutation types in S,, i.e.,

T = (A, 22, ... Af)with Y hdy=nand Ay < dp < - < Ak
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c. CT, (Z"r) CT,”) shall denote the sets of all permutation types with minimum cycle length at least r, and with minimum
cycle length exactly r, respectively.
d. For positive integers a, b, we shall denote by (a, b) the g.c.d. of a and b.

e. g(x) := L@J and g(x,y) := xy — (x,y). Here, the functions g(x) and g(x, y) are defined for non-negative integers
X, .

First, observe that if a non-trivial automorphism o fixes each of the color classes (as sets) in the random coloring of E(K,,),
then every edge in the orbit of an edge e € E(K),) under the action of o must be assigned the same color. In particular, one
can compute an upper bound for the probability that o preserves every color class as a function of the permutation type
of o.

Our current goal is the following: For a non-trivial o € S, we seek an upper bound P(c¢') on the probability that o fixes

all the color classes (as sets) in the random coloring. We then set P(A) := )" of type A P(o).

Lemma 3. Let o € S, be a non-trivial permutation of type A = ()\111, )lez’ e )\'f ). Furthermore, for i < j let (i) = L(li — 1)/2
when i = jand ljf*(i) = lil; for all j > i. Then the probability that o fixes every color class in a random coloring of K(n, 2) is at
most

P = !
(o) = o
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