On the existence of vertex-disjoint subgraphs with high degree sum ${ }^{\text {¹ }}$

Shuya Chiba ${ }^{\mathrm{a}, *}$, Nicolas Lichiardopol ${ }^{\mathrm{b}, 1}$
${ }^{\text {a }}$ Applied Mathematics, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
${ }^{\text {b }}$ Lycée A. de Craponne, Salon, France

A R T I C L E I N F O

Article history:

Received 24 June 2016
Received in revised form 25 October 2017
Accepted 30 October 2017
Available online 24 November 2017

Keywords:

Vertex-disjoint
Subgraphs
Decompositions
Minimum degree sum

Abstract

For a graph G, we denote by $\sigma_{2}(G)$ the minimum degree sum of two non-adjacent vertices if G is non-complete; otherwise, $\sigma_{2}(G)=+\infty$. In this paper, we prove the following two results: (i) If $s_{1}, s_{2} \geq 2$ are integers and G is a non-complete graph with $\sigma_{2}(G) \geq$ $2\left(s_{1}+s_{2}+1\right)-1$, then G contains two vertex-disjoint subgraphs H_{1} and H_{2} such that each H_{i} is a graph of order at least $s_{i}+1$ with $\sigma_{2}\left(H_{i}\right) \geq 2 s_{i}-1$. (ii) If $s_{1}, s_{2} \geq 2$ are integers and G is a triangle-free graph of order at least 3 with $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}\right)-1$, then G contains two vertex-disjoint subgraphs H_{1} and H_{2} such that each H_{i} is a graph of order at least $2 s_{i}$ with $\sigma_{2}\left(H_{i}\right) \geq 2 s_{i}-1$. By using this result, we also give some corollaries concerning degree conditions for the existence of k vertex-disjoint cycles.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple edges. For terminology and notation not defined in this paper, we refer the readers to [4]. Let G be a graph. We denote by $V(G), E(G)$ and $\delta(G)$ the vertex set, the edge set and the minimum degree of G, respectively. We write $|G|$ for the order of G, that is, $|G|=|V(G)|$. We denote by $d_{G}(v)$ the degree of a vertex v in G. If H is a subgraph of G, then $d_{H}(v)$ is the number of vertices in H that are adjacent to a vertex v of G. The invariant $\sigma_{2}(G)$ is defined to be the minimum degree sum of two non-adjacent vertices of G, i.e., $\sigma_{2}(G)=\min \left\{d_{G}(u)+d_{G}(v): u, v \in V(G), u \neq v, u v \notin E(G)\right\}$ if G is non-complete; otherwise, let $\sigma_{2}(G)=+\infty$. We denote by $g(G)$ the girth of G, i.e., the length of a shortest cycle of G. In this paper, "disjoint" always means "vertex-disjoint". A pair $\left(H_{1}, H_{2}\right)$ is called a partition of G if H_{1} and H_{2} are two disjoint induced subgraphs of G such that $V(G)=V\left(H_{1}\right) \cup V\left(H_{2}\right)$.

Stiebitz [14] considered the decomposition of graphs under degree constraints and proved the following result.
Theorem A (Stiebitz [14]). Let $s_{1}, s_{2} \geq 1$ be integers, and let G be a graph. If $\delta(G) \geq s_{1}+s_{2}+1$, then there exists a partition $\left(H_{1}, H_{2}\right)$ of G such that $\delta\left(H_{i}\right) \geq s_{i}$ for $i \in\{1,2\}$.

Kaneko [11] showed that the same holds for triangle-free graphs with minimum degree at least $s_{1}+s_{2}$.
Theorem B (Kaneko [11]). Let $s_{1}, s_{2} \geq 1$ be integers, and let G be a graph. If $\delta(G) \geq s_{1}+s_{2}$ and $g(G) \geq 4$, then there exists a partition $\left(H_{1}, H_{2}\right)$ of G such that $\delta\left(H_{i}\right) \geq s_{i}$ for $i \in\{1,2\}$.

[^0]Diwan further improved Theorem A for graphs with girth at least 5, see [5]. Bazgan, Tuza and Vanderpooten [1] gave polynomial-time algorithms that find such partitions.

The purpose of this paper is to consider σ_{2}-versions of Theorems A and B. More precisely, we consider the following problems.

Problem 1. Let $s_{1}, s_{2} \geq 2$ be integers, and let G be a non-complete graph. If $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}+1\right)-1$, determine whether there exists a partition $\left(H_{1}, H_{2}\right)$ of G such that $\sigma_{2}\left(H_{i}\right) \geq 2 s_{i}-1$ and $\left|H_{i}\right| \geq s_{i}+1$ for $i \in\{1,2\}$.

Problem 2. Let $s_{1}, s_{2} \geq 2$ be integers, and let G be a graph of order at least 3. If $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}\right)-1$ and $g(G) \geq 4$, determine whether there exists a partition $\left(H_{1}, H_{2}\right)$ of G such that $\sigma_{2}\left(H_{i}\right) \geq 2 s_{i}-1$ and $\left|H_{i}\right| \geq 2 s_{i}$ for $i \in\{1,2\}$.

In Problem 1 (resp., Problem 2), if we drop the condition " $\left|H_{i}\right| \geq s_{i}+1$ (resp., $\left|H_{i}\right| \geq 2 s_{i}$)" in the conclusion, then it is an easy problem. Because, for each edge $x y$ in a graph G satisfying the assumption of Problem 1 (resp., the assumption of Problem 2), $H_{1}=G[\{x, y\}]$ and $H_{2}=G-\{x, y\}$ satisfy $\sigma_{2}\left(H_{1}\right)=\infty>2 s_{1}-1$ and $\sigma_{2}\left(H_{2}\right) \geq \sigma_{2}(G)-2|\{x, y\}| \geq 2 s_{2}-1$. Here, for a vertex subset X of a graph $G, G[X]$ denotes the subgraph of G induced by X, and let $G-X=G[V(G) \backslash X]$. (Similarly, for the case where $s_{i}=1$ for some i, we can easily solve it.)

If G_{1} is a balanced complete multipartite graph with $r+1(\geq 4)$ partite sets of size $s(\geq 2)$, then $\sigma_{2}\left(G_{1}\right)=2 r s=$ $2((r s-r+1)+(r-1)+1)-2$, and we can check that G_{1} contains no partitions as in Problem 1 for $\left(s_{1}, s_{2}\right)=(r s-r+1, r-1)$. Thus, the condition " $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}+1\right)-1$ " in Problem 1 is best possible in a sense if it is true. If G_{2} is a complete bipartite graph $K_{s_{1}+s_{2}-1, s_{1}+s_{2}}$, then $\sigma_{2}\left(G_{2}\right)=2\left(s_{1}+s_{2}\right)-2$ and G_{2} does not contain partitions as in Problem 2. Thus, G_{2} shows that the condition " $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}\right)-1$ " in Problem 2 is also best possible if it is true.

Before giving the main result, we introduce the outline of the proof of Theorems A and B. The proof consists of the following two steps:

Step 1: To show the existence of two disjoint subgraphs of high minimum degree, i.e., we show the existence of two disjoint subgraphs H_{1} and H_{2} such that $\delta\left(H_{i}\right) \geq s_{i}$ for $i \in\{1,2\}$.
Step 2: To show the existence of two disjoint subgraphs of high minimum degree that partition $V(G)$ by using Step 1.
In particular, in the proof of Theorems A and B, Step 2 follows easily from Step 1. In fact, if G is a graph with $\delta(G) \geq s_{1}+s_{2}-1$ and G contains a pair $\left(H_{1}, H_{2}\right)$ of disjoint subgraphs with $\delta\left(H_{i}\right) \geq s_{i}$ for $i \in\{1,2\}$, then we can easily transform the pair into a partition of G keeping its minimum degree condition (see [14, Proposition 4]).

Considering the situation for the proof of Theorems A and B, one may approach Problems 1 and 2 by following the same steps as above. However, for the case of σ_{2}-versions, neither Step 1 nor Step 2 is an easy problem because we allow vertices with low degree. In fact, in the proof of Step 2 for Theorem A ([14, Proposition 4]), the assumption that every vertex has high degree plays a crucial role. At the moment, we do not know whether we can extend disjoint subgraphs of high minimum "degree sum" to a partition or not. However, we can solve Step 1 for Problems 1 and 2 . The following are our main results.

Theorem 1. Let $s_{1}, s_{2} \geq 2$ be integers, and let G be a non-complete graph. If $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}+1\right)-1$, then there exist two disjoint induced subgraphs H_{1} and H_{2} of G such that $\sigma_{2}\left(H_{i}\right) \geq 2 s_{i}-1$ and $\left|H_{i}\right| \geq s_{i}+1$ for $i \in\{1,2\}$.

Theorem 2. Let $s_{1}, s_{2} \geq 2$ be integers, and let G be a graph of order at least 3 . If $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}\right)-1$ and $g(G) \geq 4$, then there exist two disjoint induced subgraphs H_{1} and H_{2} of G such that $\sigma_{2}\left(H_{i}\right) \geq 2 s_{i}-1$ and $\left|H_{i}\right| \geq 2 s_{i}$ for $i \in\{1,2\}$.

The graphs G_{1} and G_{2} defined above also show that the constraints on σ_{2} in Theorems 1 and 2 cannot be weakened.
In order to show Theorems 1 and 2, we actually prove slightly stronger results as follows. Here, for a graph G and an integer s, we define $V_{\leq s}(G)=\left\{v \in V(G): d_{G}(v) \leq s\right\}$.

Theorem 3. Let $s_{1}, s_{2} \geq 2$ be integers, and let G be a non-complete graph. If $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}+1\right)-1$, then there exist two disjoint induced subgraphs H_{1} and H_{2} of G such that for each i with $i \in\{1,2\}$, the following hold:
(i) $d_{H_{i}}(u) \geq s_{i}$ for $u \in V\left(H_{i}\right) \backslash V_{\leq s_{1}+s_{2}}(G)$.
(ii) $d_{H_{i}}(u)+d_{H_{i}}(v) \geq 2 s_{i}-1$ for $u \in V\left(H_{i}\right) \backslash V_{\leq s_{1}+s_{2}}(G)$ and $v \in V\left(H_{i}\right) \cap V_{\leq s_{1}+s_{2}}(G)$ with $u v \notin E\left(H_{i}\right)$.
(iii) $\left|H_{i}\right| \geq s_{i}+1$.

Theorem 4. Let $s_{1}, s_{2} \geq 2$ be integers, and let G be a graph of order at least 3 . If $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}\right)-1$ and $g(G) \geq 4$, then there exist two disjoint induced subgraphs H_{1} and H_{2} of G such that for each i with $i \in\{1,2\}$, the following hold:
(i) $d_{H_{i}}(u) \geq s_{i}$ for $u \in V\left(H_{i}\right) \backslash V_{\leq s_{1}+s_{2}-1}(G)$.
(ii) $d_{H_{i}}(u)+d_{H_{i}}(v) \geq 2 s_{i}-1$ for $u \in V\left(H_{i}\right) \backslash V_{\leq s_{1}+s_{2}-1}(G)$ and $v \in V\left(H_{i}\right) \cap V_{\leq s_{1}+s_{2}-1}(G)$ with $u v \notin E\left(H_{i}\right)$.
(iii) $\left|H_{i}\right| \geq 2 s_{i}$.

Note that if G is a graph with $\sigma_{2}(G) \geq 2\left(s_{1}+s_{2}+1\right)-1$, then $G\left[V_{\leq s_{1}+s_{2}}(G)\right]$ is a complete graph (see also Lemma 1(i) in Section 2.1). Therefore, for any two distinct non-adjacent vertices in such a graph G, at least one of the two vertices belongs to $V(G) \backslash V_{\leq s_{1}+s_{2}}(G)$, i.e, (i) and (ii) of Theorem 3 imply that $\sigma_{2}\left(H_{i}\right) \geq 2 s_{i}-1$. Thus Theorem 1 immediately follows from

https://daneshyari.com/en/article/6871520

Download Persian Version:
https://daneshyari.com/article/6871520

Daneshyari.com

[^0]: An extended abstract has been accepted in: EuroComb 2015, Electr. Notes Discrete Math., vol. 49, 2015, pp. 359-366.

 * Corresponding author.

 E-mail addresses: schiba@kumamoto-u.ac.jp (S. Chiba), nicolas.lichiardopol@neuf.fr (N. Lichiardopol).
 ${ }^{1}$ Deceased author.

