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a b s t r a c t

Edge-intersection graphs of paths on a grid (or EPG graphs) are graphs whose vertices can
be represented as simple paths on a rectangular grid such that two vertices are adjacent
in the graph if and only if the corresponding paths share at least one edge of the grid. For
two boundary points p and q on two adjacent boundaries of a rectangular grid G, we call
the unique single-bend path connecting p and q in G using no other boundary point of G
as the path generated by (p, q). A path in G is called boundary-generated, if it is generated
by some pair of points on two adjacent boundaries of G. In this article, we study the edge-
intersection graphs of boundary-generated paths on a grid or ∂EPG graphs. Themotivation
for studying these graphs comes from problems in the context of circuit layout.

We show that ∂EPG graphs can be covered by two collections of vertex-disjoint co-
bipartite chain graphs. This leads us to a linear-time testable characterization of ∂EPG trees
and also an almost tight upper bound on the equivalence covering number of general ∂EPG
graphs.We also study the cases of two-sided ∂EPG and three-sided ∂EPG graphs, which are
respectively, the subclasses of ∂EPG graphs obtained when all the boundary-vertex pairs
which generate the paths are restricted to lie on at most two or three boundaries of the
grid. For the former case, we give a complete characterization.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Edge intersection graphs of paths on a grid (or for short EPG graphs) were first introduced by Golumbic, Lipshteyn and
Stern in [13]. This is the class of graphs whose vertices can be represented as simple paths on a rectangular grid so that two
vertices are adjacent if and only if the corresponding paths share at least one edge of the grid.

EPG graphs have a practical use, e.g., in the context of circuit layout setting, which may be modeled as paths (wires) on
a grid. In the knock-knee layoutmodel, twowiresmay either cross or bend (turn) at a common grid point, but are not allowed
to share a grid-edge; that is, overlap of wires is not allowed.

1.1. Bk-EPG graphs

In [13], the authors show that every graph is an EPG graph. That is, for every graph G = (V , E) there exists an EPG
representation ⟨G,P⟩ where P = {Pv : v ∈ V } is a collection of paths on a grid G, corresponding to the vertices of V and
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satisfying: paths Pv, Pu ∈ P share a grid-edge of G if and only if (v, u) ∈ E. Moreover, they show that if G has n vertices and
m edges, then there exists an EPG representation ⟨G,P⟩ of G in which G is a grid of size n × (n + m) and the paths in P are
monotonic. As such, much of the current research today focuses on subclasses of EPG graphs, and, in particular, limiting the
type of paths allowed.

A turn of a path at a grid point is called a bend and a graph is called a k-bend EPG graph (denoted Bk-EPG) if it has an EPG
representation in which each path has at most k bends. It is both interesting mathematically, and justified by the circuit
layout application described above, to consider subclasses of graphs, e.g., by bounding the number of bends allowed in each
path.

In [4], the authors show that for any k, only a small fraction of all labeled graphs on n vertices are Bk-EPG, and that for any
fixed degree d ≥ 4, a grid size ofΘ(n2) is needed to give an EPG representation of every graphwith n vertices andmaximum
degree d, for sufficiently large n. For example, a representation of the complete bipartite graph Kn/2,n/2 needs at least n2/4
grid-edges, and [13] showed that 3n2 grid-edges is sufficient to represent any graph.

The class of B0-EPG graphs is easily seen to be equivalent to the well known family of interval graphs (see [11]). B1-EPG
graphs are the single bend EPG graphs, studied further in [3,6,8,13,14]. Improving a result of [5], it was shown in [17] that
every planar graph is a B4-EPG graph. It is still openwhether k = 4 is best possible. So far it is only known that there are planar
graphs that are B3-EPG graphs and not B2-EPG graphs. Some subclasses of planar graphs have shown to be B2-EPG graphs,
e.g., Halin graphs [10] and outerplanar graphs [17] (thus proving a conjecture of [5]). Also, [1] have shown that circular-arc
graphs are B3-EPG graphs, and that this is best possible.

For the case of B1-EPG graphs, Golumbic, Lipshteyn and Stern [13] showed that every tree is a B1-EPG graph, and in [14]
they showed that single bend paths on a grid have strong Helly number 4. Asinowski and Ries [3] proved that every B1-EPG
graph on n vertices contains either a clique or a stable set of size at least n1/3. In [3], the authors also give a characterization
of the B1-EPG graphs among some subclasses of chordal graphs, namely, chordal bull-free graphs, chordal claw-free graphs,
chordal diamond-free graphs, and special cases of split graphs. In [8], a characterization of the sub-family of cographs that
are B1-EPG graphs is given by a complete family of minimal forbidden induced subgraphs.

No characterization is known for Bk-EPG graphs (for any k ≥ 1 ) and the recognition problems are NP-complete for
k = 1 [16] and k = 2 [21]. For k = 1, the recognition problem remains NP-complete even if just one of the four single bend
shapes is allowed, the so called L-shaped B1-EPG graphs [6].

1.2. Boundary generated EPG graphs

In this paper, we consider a further restriction on B1-EPG graphs, namely that, the endpoints of every path lie on the
boundary of the host rectangular grid; see Fig. 1 for an illustration. This restriction is motivated by applications in circuit
design, where it is easier to take out connections from the edge of the chip or board. This notion was first proposed for
investigation in [12]. Formally,

Definition 1.1. For two boundary points p and q on two adjacent boundaries of a rectangular grid G, we call the unique
single-bend path connecting p and q in G using no other boundary point of G the path generated by (p, q). A path in G is called
boundary-generated, if it is generated by two points on adjacent boundaries of G. A graphG is called an edge-intersection graph
of boundary-generated paths in a grid, ∂EPG graphs for short, if there exists a rectangular grid G and a representationψ which
assigns to every vertex in G, a boundary-generated path in G such that two vertices u, v ∈ V (G) are adjacent in G, if and only
if the corresponding paths ψ(u) and ψ(v) share a common grid-edge of G. In this case, we call ⟨G,P⟩ a ∂EPG representation
of G, where P is the multiset {ψ(v) : v ∈ V (G)}.

2. Preliminaries

All graphs considered are finite and undirected. The complement of a graph G is denoted by G. Two adjacent (non-
adjacent) vertices with the same neighborhood are called true twins (false twins). The reduced graph of a graph G is the graph
obtained from G by deleting all but one vertex from each set of false twins. The line graph L(G) of a graph G is the intersection
graph of the edge-set of G.

An equivalence graph is a vertex disjoint union of cliques, or equivalently, the graph where the adjacency relation is an
equivalence relation. The equivalence covering number eq(G) of a graph G is the minimum number of equivalence graphs
whose union is G [2]. For triangle-free graphs, equivalence covering number is the same as edge-chromatic number.

The product dimension or Prague dimension of a graph is a parameterwhich is closely related to the equivalence covering
number. A product k-encoding of a graph G is obtained by associating to each vertex v a unique vector f (v) = (v1, . . . , vk) over
the natural numbers so that for xy ∈ E(G) the vectors f (x) and f (y) differ in all coordinates and for xy ̸∈ E(G) the vectors f (x)
and f (y) agree in at least one coordinate. The product dimension or Prague dimension of a graph G, pdim(G), is the smallest
number k such that G has a product k-encoding. It is an easy observation (cf. [20]) that

eq(G) ≤ pdim(G) ≤ eq(G) + 1.

The difference of 1 occurs because a product k-encoding needs to associate a unique vector to each vertex. For instance, the
product dimension of the empty graph G on two vertices is 2 whereas G can be covered by one clique. But if G has no true
twins (i.e., G has no false twins), then eq(G) = pdim(G).
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