ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Michael A. Henning^a, William F. Klostermeyer^{b,*}, Gary MacGillivray^c

^a Department of Pure and Applied Mathematics, University of Johannesburg, South Africa

^b School of Computing, University of North Florida, Jacksonville, FL 32224-2669, United States

^c Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC Victoria, BC, Canada V8W 3R4

ARTICLE INFO

Article history: Received 11 January 2017 Received in revised form 19 June 2017 Accepted 30 October 2017 Available online xxxx

Keywords: Dominating set Roman dominating function Perfect dominating set Tree

ABSTRACT

A perfect Roman dominating function on a graph *G* is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex *u* with f(u) = 0 is adjacent to exactly one vertex *v* for which f(v) = 2. The weight of a perfect Roman dominating function *f* is the sum of the weights of the vertices. The perfect Roman domination number of *G*, denoted $\gamma_R^p(G)$, is the minimum weight of a perfect Roman dominating function in *G*. We show that if *G* is a tree on $n \ge 3$ vertices, then $\gamma_R^p(G) \le \frac{4}{5}n$, and we characterize the trees achieving equality in this bound.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V, E) be an undirected graph. Denote the open and closed neighborhoods of a vertex $x \in V$ by N(x) and N[x], respectively. That is, $N(x) = \{v \mid xv \in E\}$ and $N[x] = N(x) \cup \{x\}$. A *dominating set* of graph G is a set $D \subseteq V$ such that for each $u \in V \setminus D$, there exists an $x \in D$ adjacent to u. The minimum cardinality amongst all dominating sets of G is the *domination number*, denoted as $\gamma(G)$. A thorough treatise on dominating sets can be found in [4].

A perfect dominating set is a set $S \subseteq V$ such that for all $v \in V$, $|N[v] \cap S| = 1$. Perfect dominating sets and several variations on perfect domination have received much attention in the literature; for example, see some discussion in [4] or the survey in [6].

A Roman dominating function of a graph *G*, abbreviated RD-function, is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex *u* with f(u) = 0 is adjacent to at least one vertex *v* for which f(v) = 2. The weight of a vertex *v* is its value, f(v), assigned to it under *f*. The weight, w(*f*), of *f* is the sum, $\sum_{u \in V(G)} f(u)$, of the weights of the vertices. The Roman domination number, denoted $\gamma_{R}(G)$, is the minimum weight of an RD-function in *G*; that is,

 $\gamma_R(G) = \min\{w(f) \mid f \text{ is an RD-function in } G\}.$

Roman domination was first studied in depth in a graph theory setting in [3], after its initial introduction in the series of papers [8–11]. Roman domination was considered in trees in [5]. In this paper we introduce a perfect version of Roman domination.

A perfect Roman dominating function of a graph *G*, abbreviated PRD-function, is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex *u* with f(u) = 0 is adjacent to exactly one vertex *v* for which f(v) = 2. The perfect Roman domination number, denoted $\gamma_R^p(G)$, is the minimum weight of a PRD-function in *G*; that is,

 $\gamma_R^p(G) = \min\{w(f) \mid f \text{ is a PRD-function in } G\}.$

https://doi.org/10.1016/j.dam.2017.10.027 0166-218X/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: mahenning@uj.ac.za (M.A. Henning), wkloster@unf.edu (W.F. Klostermeyer), gmacgill@math.uvic.ca (G. MacGillivray).

M.A. Henning et al. / Discrete Applied Mathematics (())

Fig. 1. A tree in the family τ .

A PRD-function with minimum weight $\gamma_R^p(G)$ in *G* is called a $\gamma_R^p(G)$ -function. Note that every graph with *n* vertices satisfies $\gamma_R^p(G) \le n$: this can be attained by letting f(v) = 1 for each vertex in the graph. As an example, let *P* be the Petersen graph. Then $\gamma(P) = 3$, $\gamma_R(P) = 6$ and $\gamma_R^p(P) = 7$ (the latter can be achieved with

three vertices of weight 2 and one vertex of weight 1).

A different notion of perfection in Roman domination was considered in [7]. In that paper, the authors study Roman dominating functions in which the vertices of weight 1 and 2 induce an independent set. Another related variant of Roman domination in which each vertex of weight 0 must be adjacent to at least two vertices weighted 2 or one vertex weighted 3 is explored in [1]; the vertices with weight 1 must also be adjacent to at least one vertex with weight 2 or 3, though it is shown there that no weight 1 vertices are ever needed.

In this paper, we show that if G is a tree on $n \ge 3$ vertices, then $\gamma_R^p(G) \le \frac{4}{5}n$, and we characterize the trees achieving equality in this bound.

2. Notation

For a subset S of vertices of a graph G, the subgraph induced by S is denoted by G[S]. The subgraph obtained from G by deleting all vertices in S and all edges incident with vertices in S is denoted by G - S.

The *distance* between two vertices u and v is the length of a shortest (u, v)-path in G. The *eccentricity* of a graph G is the maximum distance between any two vertices in G.

A *leaf* is a vertex of degree 1, while its neighbor is a *support vertex*. A *star* is the graph $K_{1,k}$, where $k \ge 1$. For a star with k > 1 leaves, the central vertex is the unique vertex of degree greater than one. For $r, s \ge 1$, a double star S(r, s) is the tree with exactly two vertices that are not leaves, one of which has r leaf neighbors and the other s leaf neighbors. We denote a path on *n* vertices by P_n .

A rooted tree T distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. The set of children of v is denoted by C(v). A descendant of v is a vertex $u \neq v$ such that the unique (r, u)-path contains v, while an *ancestor* of v is a vertex $u \neq v$ that belongs to the (r, v)-path in T. In particular, every child of v is a descendant of v while the parent of v is an ancestor of v. The grandparent of v is the ancestor of v at distance 2 from v. A grandchild of v is the descendant of v at distance 2 from v. We let D(v) denote the set of descendants of v, and we define $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_{v} .

The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest (u, v)-path in G. The maximum distance among all pairs of vertices of G is the diameter of G, denoted by diam(G). The center of a graph G is the set of all vertices of minimum eccentricity, and a central vertex of G is a vertex that belongs to its center. That is, a central vertex of G is a vertex with eccentricity equal to its radius. In particular, a path P_n has a unique central vertex if n is odd, and has two (adjacent) central vertices if *n* is even.

As a shorthand, we shall use the standard notation $[k] = \{1, ..., k\}$.

3. Main result

Let \mathcal{T} be the family of all trees T whose vertex set can be partitioned into sets, each set inducing a path P_5 on five vertices, such that the subgraph induced by the central vertices of these P_5 's is connected. We call the subtree induced by these central vertices the underlying subtree of the resulting tree T, and we call each such path P_5 a base path of the tree T. A tree in the family T with six base paths and whose underlying subtree is a path P_6 is illustrated in Fig. 1.

We shall prove the following result.

Theorem 1. If T is a tree of order $n \ge 3$, then $\gamma_R^p(T) \le \frac{4}{5}n$, with equality if and only if $T \in \mathcal{T}$.

As an immediate corollary of Theorem 1, we have the following result due to Chambers, Kinnersley, Prince and West [2].

Corollary 1 ([2]). If T is a tree of order $n \ge 3$, then $\gamma_R(T) \le \frac{4}{5}n$, with equality if and only if $T \in \mathcal{T}$.

Download English Version:

https://daneshyari.com/en/article/6871554

Download Persian Version:

https://daneshyari.com/article/6871554

Daneshyari.com