Perfect Roman domination in trees

Michael A. Henning ${ }^{\text {a }}$, William F. Klostermeyer ${ }^{\text {b,* }}$, Gary MacGillivray ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Pure and Applied Mathematics, University of Johannesburg, South Africa
${ }^{\text {b }}$ School of Computing, University of North Florida, Jacksonville, FL 32224-2669, United States
${ }^{\text {c }}$ Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC Victoria, BC, Canada V8W 3R4

ARTICLE INFO

Article history:

Received 11 January 2017
Received in revised form 19 June 2017
Accepted 30 October 2017
Available online xxxx

Keywords:

Dominating set
Roman dominating function
Perfect dominating set
Tree

Abstract

A perfect Roman dominating function on a graph G is a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u with $f(u)=0$ is adjacent to exactly one vertex v for which $f(v)=2$. The weight of a perfect Roman dominating function f is the sum of the weights of the vertices. The perfect Roman domination number of G, denoted $\gamma_{R}^{p}(G)$, is the minimum weight of a perfect Roman dominating function in G. We show that if G is a tree on $n \geq 3$ vertices, then $\gamma_{R}^{p}(G) \leq \frac{4}{5} n$, and we characterize the trees achieving equality in this bound.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be an undirected graph. Denote the open and closed neighborhoods of a vertex $x \in V$ by $N(x)$ and $N[x]$, respectively. That is, $N(x)=\{v \mid x v \in E\}$ and $N[x]=N(x) \cup\{x\}$. A dominating set of graph G is a set $D \subseteq V$ such that for each $u \in V \backslash D$, there exists an $x \in D$ adjacent to u. The minimum cardinality amongst all dominating sets of G is the domination number, denoted as $\gamma(G)$. A thorough treatise on dominating sets can be found in [4].

A perfect dominating set is a set $S \subseteq V$ such that for all $v \in V,|N[v] \cap S|=1$. Perfect dominating sets and several variations on perfect domination have received much attention in the literature; for example, see some discussion in [4] or the survey in [6].

A Roman dominating function of a graph G, abbreviated RD-function, is a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u with $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a vertex v is its value, $f(v)$, assigned to it under f. The weight, $\mathrm{w}(f)$, of f is the sum, $\sum_{u \in V(G)} f(u)$, of the weights of the vertices. The Roman domination number, denoted $\gamma_{R}(G)$, is the minimum weight of an RD-function in G; that is,

$$
\gamma_{R}(G)=\min \{\mathrm{w}(f) \mid f \text { is an RD-function in } G\} .
$$

Roman domination was first studied in depth in a graph theory setting in [3], after its initial introduction in the series of papers [8-11]. Roman domination was considered in trees in [5]. In this paper we introduce a perfect version of Roman domination.

A perfect Roman dominating function of a graph G, abbreviated PRD-function, is a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u with $f(u)=0$ is adjacent to exactly one vertex v for which $f(v)=2$. The perfect Roman domination number, denoted $\gamma_{R}^{p}(G)$, is the minimum weight of a PRD-function in G; that is,

$$
\gamma_{R}^{p}(G)=\min \{\mathrm{w}(f) \mid f \text { is a PRD-function in } G\}
$$

[^0]

Fig. 1. A tree in the family \mathcal{T}.

A PRD-function with minimum weight $\gamma_{R}^{p}(G)$ in G is called a $\gamma_{R}^{p}(G)$-function.
Note that every graph with n vertices satisfies $\gamma_{R}^{p}(G) \leq n$: this can be attained by letting $f(v)=1$ for each vertex in the graph. As an example, let P be the Petersen graph. Then $\gamma(P)=3, \gamma_{R}(P)=6$ and $\gamma_{R}^{p}(P)=7$ (the latter can be achieved with three vertices of weight 2 and one vertex of weight 1).

A different notion of perfection in Roman domination was considered in [7]. In that paper, the authors study Roman dominating functions in which the vertices of weight 1 and 2 induce an independent set. Another related variant of Roman domination in which each vertex of weight 0 must be adjacent to at least two vertices weighted 2 or one vertex weighted 3 is explored in [1]; the vertices with weight 1 must also be adjacent to at least one vertex with weight 2 or 3 , though it is shown there that no weight 1 vertices are ever needed.

In this paper, we show that if G is a tree on $n \geq 3$ vertices, then $\gamma_{R}^{p}(G) \leq \frac{4}{5} n$, and we characterize the trees achieving equality in this bound.

2. Notation

For a subset S of vertices of a graph G, the subgraph induced by S is denoted by $G[S]$. The subgraph obtained from G by deleting all vertices in S and all edges incident with vertices in S is denoted by $G-S$.

The distance between two vertices u and v is the length of a shortest (u, v)-path in G. The eccentricity of a graph G is the maximum distance between any two vertices in G.

A leaf is a vertex of degree 1 , while its neighbor is a support vertex. A star is the graph $K_{1, k}$, where $k \geq 1$. For a star with $k>1$ leaves, the central vertex is the unique vertex of degree greater than one. For $r, s \geq 1$, a double star $S(r, s)$ is the tree with exactly two vertices that are not leaves, one of which has r leaf neighbors and the other s leaf neighbors. We denote a path on n vertices by P_{n}.

A rooted tree T distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. The set of children of v is denoted by $C(v)$. A descendant of v is a vertex $u \neq v$ such that the unique (r, u)-path contains v, while an ancestor of v is a vertex $u \neq v$ that belongs to the (r, v)-path in T. In particular, every child of v is a descendant of v while the parent of v is an ancestor of v. The grandparent of v is the ancestor of v at distance 2 from v. A grandchild of v is the descendant of v at distance 2 from v. We let $D(v)$ denote the set of descendants of v, and we define $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}.

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest (u, v)-path in G. The maximum distance among all pairs of vertices of G is the diameter of G, denoted by diam (G). The center of a graph G is the set of all vertices of minimum eccentricity, and a central vertex of G is a vertex that belongs to its center. That is, a central vertex of G is a vertex with eccentricity equal to its radius. In particular, a path P_{n} has a unique central vertex if n is odd, and has two (adjacent) central vertices if n is even.

As a shorthand, we shall use the standard notation $[k]=\{1, \ldots, k\}$.

3. Main result

Let \mathcal{T} be the family of all trees T whose vertex set can be partitioned into sets, each set inducing a path P_{5} on five vertices, such that the subgraph induced by the central vertices of these P_{5} 's is connected. We call the subtree induced by these central vertices the underlying subtree of the resulting tree T, and we call each such path P_{5} a base path of the tree T. A tree in the family \mathcal{T} with six base paths and whose underlying subtree is a path P_{6} is illustrated in Fig. 1.

We shall prove the following result.
Theorem 1. If T is a tree of order $n \geq 3$, then $\gamma_{R}^{p}(T) \leq \frac{4}{5} n$, with equality if and only if $T \in \mathcal{T}$.
As an immediate corollary of Theorem 1, we have the following result due to Chambers, Kinnersley, Prince and West [2].
Corollary 1 ([2]). If T is a tree of order $n \geq 3$, then $\gamma_{R}(T) \leq \frac{4}{5} n$, with equality if and only if $T \in \mathcal{T}$.

https://daneshyari.com/en/article/6871554

Download Persian Version:

https://daneshyari.com/article/6871554

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mahenning@uj.ac.za (M.A. Henning), wkloster@unf.edu (W.F. Klostermeyer), gmacgill@math.uvic.ca (G. MacGillivray).

