ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Total domination stability in graphs

Michael A. Henning^{a,*}, Marcin Krzywkowski^{a,b,1}

^a Department of Pure and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa ^b Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland

ARTICLE INFO

Article history: Received 15 November 2016 Received in revised form 6 July 2017 Accepted 20 July 2017 Available online xxxx

Keywords: Total domination Total domination stability

ABSTRACT

A set *D* of vertices in an isolate-free graph *G* is a total dominating set of *G* if every vertex is adjacent to a vertex in *D*. The total domination number, $\gamma_t(G)$, of *G* is the minimum cardinality of a total dominating set of *G*. We note that $\gamma_t(G) \ge 2$ for every isolate-free graph *G*. A non-isolating set of vertices in *G* is a set of vertices whose removal from *G* produces an isolate-free graph. The γ_t^- -stability, denoted $\operatorname{st}_{\gamma_t}^-(G)$, of *G* is the minimum size of a non-isolating set *S* of vertices in *G* whose removal decreases the total domination number. We show that if *G* is a connected graph with maximum degree Δ satisfying $\gamma_t(G) \ge 3$, then $\operatorname{st}_{\gamma_t}^-(G) \le 2\Delta - 1$, and we characterize the infinite family of trees that achieve equality in this upper bound. The total domination stability, $\operatorname{st}_{\gamma_t}(G)$, of *G* is the minimum size of a non-isolating set of vertices in *G* whose removal decreases the total domination number. We prove that if *G* is a connected graph with maximum degree Δ satisfying $\gamma_t(G) \ge 3$, then $\operatorname{st}_{\gamma_t}(G) \le 2\Delta - 1$.

© 2017 Published by Elsevier B.V.

1. Introduction

The concept of domination stability in graphs was introduced in 1983 by Bauer, Harary, Nieminen and Suffel [1] and has been studied, for example, in [13]. We introduce and study the total version of domination stability. We demonstrate that these two versions differ significantly.

A *dominating set* of a graph *G* with vertex set *V*(*G*) is a set *D* of vertices of *G* such that every vertex in *V*(*G*) \ *D* is adjacent to a vertex in *D*. The *domination number* of *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. The concept of domination critical graphs is well studied in the literature (see, for example, [1–4,6,8,9,15,16]). We focus on domination stability in graphs. As defined in [1], the γ^- -stability of *G*, denoted by $\gamma^-(G)$, is the minimum number of vertices whose removal decreases the domination number, and the γ^+ -stability of *G*, denoted by $\gamma^+(G)$, is the minimum number of vertices whose removal increases the domination number. The domination stability of *G*, denoted st_{γ}(*G*), is the minimum number of vertices whose removal changes the domination number. Thus, st_{$\gamma}(G) = min{<math>\gamma^-(G), \gamma^+(G)$ }.</sub>

An *isolate-free graph* is a graph with no isolated vertex. A *total dominating set*, abbreviated TD-set, of an isolate-free graph *G* is a set *D* of vertices of *G* such that every vertex in V(G) is adjacent to at least one vertex in *D*. The *total domination number* of *G*, denoted by $\gamma_t(G)$, is the minimum cardinality of a TD-set of *G*. A *non-isolating set* of vertices in *G* is a set *D* of vertices such that G - D is an isolate-free graph, where G - D denotes the graph obtained from *G* by removing *D* and all edges incident with vertices in *D*. Let NI(*G*) denote the set of all non-isolating sets of vertices of *G*. The concept of total domination critical graphs is well studied in the literature (see, for example, [5,7,10,11,17].) Chapter 11 in the book [12] is devoted to total domination critical graphs.

¹ Research fellow of the Claude Leon Foundation at the University of Johannesburg.

http://dx.doi.org/10.1016/j.dam.2017.07.022 0166-218X/© 2017 Published by Elsevier B.V.

^{*} Corresponding author.

E-mail addresses: mahenning@uj.ac.za (M.A. Henning), marcin.krzywkowski@gmail.com (M. Krzywkowski).

M.A. Henning, M. Krzywkowski / Discrete Applied Mathematics II (IIII) III-III

Unless otherwise stated, let G be an isolate-free graph. The γ_t^- -stability of G, denoted $st_{\omega}^-(G)$, is the minimum size of a non-isolating set S of vertices in G whose removal decreases the total domination number. Thus,

$$\operatorname{st}_{\gamma_t}^{-}(G) = \min_{S \in \operatorname{NI}(G)} \{ |S| : \gamma_t(G - S) < \gamma_t(G) \}.$$

The γ_t^+ -stability of G, denoted st (G), is the minimum size of a non-isolating set of vertices in G whose removal increases the total domination number, if such a set exists. In this case,

$$\operatorname{st}_{\gamma_t}^+(G) = \min_{S \in \operatorname{NI}(G)} \{ |S| : \gamma_t(G - S) > \gamma_t(G) \}$$

If no such non-isolating set exists whose removal increases the total domination number, we define $st^+_{\nu}(G) = \infty$. As a

trivial example, $st_{\gamma_t}^-(P_7) = 2$ while $st_{\gamma_t}^+(P_7) = \infty$. The *total domination stability* of *G*, denoted $st_{\gamma_t}(G)$, is the minimum size of a non-isolating set *S* of vertices in *G* whose removal changes the total domination number. Thus,

$$\operatorname{st}_{\gamma_t}(G) = \min_{S \in \operatorname{NI}(G)} \{ |S| : \gamma_t(G - S) \neq \gamma_t(G) \} = \min\{\operatorname{st}_{\gamma_t}^-(G), \operatorname{st}_{\gamma_t}^+(G) \}$$

2. Preliminaries

For notation and graph theory terminology we generally follow [12]. The order of G is denoted by n(G) = |V(G)|, and the size of G by m(G) = |E(G)|. We denote the degree of a vertex v in the graph G by $d_G(v)$. A vertex of degree 0 is called an *isolated vertex.* The maximum (minimum) degree among the vertices of G is denoted by $\Delta(G)$ ($\delta(G)$, respectively). The open neighborhood of v is $N_G(v) = \{u \in V(G) | uv \in E(G)\}$ and the closed neighborhood of v is $N_G(v) = N_G(v) \cup \{v\}$. For a set $S \subseteq V(G)$, its open neighborhood is the set $N_G(S) = \bigcup_{v \in S} N_G(v)$, and its closed neighborhood is the set $N_G[S] = N_G(S) \cup S$. If the graph G is clear from the context, we simply write d(v), N(v), N[v], N(S) and N[S] instead of $d_G(v)$, $N_G(v)$, $N_G(v)$, $N_G(S)$ and $N_G[S]$, respectively.

For a subset S of vertices of G, the subgraph induced by S is denoted by G[S]. The subgraph obtained from G by deleting all vertices in S and all edges incident with vertices in S is denoted by G-S. The set S is an open packing if the open neighborhoods of vertices in S are pairwise disjoint. The open packing number, $\rho^0(G)$, of G is the maximum cardinality of an open packing in G.

A non-trivial graph is a graph of order at least 1. A path and cycle on n vertices are denoted by P_n and C_n , respectively. A complete graph on *n* vertices is denoted by K_n , while a complete bipartite graph with partite sets of size ℓ and *m* is denoted by $K_{\ell,m}$. A star is the graph $K_{1,k}$, where $k \ge 1$. For $r, s \ge 1$, a double star S(r, s) is the tree with exactly two vertices that are not leaves, one of which has r leaf-neighbors and the other s leaf-neighbors.

A rooted tree T distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a *child* of v is any other neighbor of v. The set of children of v is denoted by C(v). A descendant of v is a vertex $u \neq v$ such that the unique (r, u)-path contains v, while an *ancestor* of v is a vertex $u \neq v$ that belongs to the (r, v)-path in T. In particular, every child of v is a descendant of v while the parent of v is an ancestor of v.

The *distance* between two vertices u and v in a connected graph G, denoted by $d_G(u, v)$, is the length of a shortest (u, v)path in G. The maximum distance among all pairs of vertices of G is the diameter of G, denoted by diam(G). We use the standard notation $[k] = \{1, \ldots, k\}.$

Following the original paper of Bauer et al. [1], we consider the null graph K_0 (also called the order-zero graph), which is the unique graph having no vertices and hence has order zero, as a graph. With this consideration, the domination stability of a non-trivial graph is always defined. In particular, st_{γ}(K_n) = n since $\gamma(K_n) = 1$ and removing all vertices from the complete graph K_n on n vertices produces the null graph with domination number zero. Bauer et al. [1] established the following fundamental upper bound on the domination stability of a graph.

Theorem 1 ([1]). For every nontrivial graph G, we have $st_{\nu}(G) \leq \delta(G) + 1$.

An immediate consequence of Theorem 1, we have the following result observed by Rad et al. [13].

Observation 2 ([13]). If $G \ncong K_n$ is a graph of order *n*, then $st_{\nu}(G) \le n - 1$.

Considering the null graph K_0 as a graph, we have the following trivial observation.

Observation 3. If G is a graph of order n and $\gamma_t(G) = 2$, then $st_{\gamma_t}^-(G) = n$.

In view of Observation 3, it is only of interest for us to consider isolate-free graphs G with $\gamma_t(G) \geq 3$ when determining $st_{\mu}^{-}(G)$. With this assumption, we note that if u and v are adjacent vertices in G, then the set $S = V(G) \setminus \{u, v\}$ is a non-isolating set of vertices in G and $\gamma_t(G-S) = \gamma_t(K_2) = 2 < \gamma_t(G)$. Thus, the γ_t^- -stability of an isolate-free graph G with $\gamma_t(G) \ge 3$ is at most two less than its order. We state this formally as follows.

Observation 4. If G is a graph of order n and $\gamma_t(G) \ge 3$, then $st^-_{\gamma_t}(G) \le n-2$.

Please cite this article in press as: M.A. Henning, M. Krzywkowski, Total domination stability in graphs, Discrete Applied Mathematics (2017), http://dx.doi.org/10.1016/j.dam.2017.07.022.

2

Download English Version:

https://daneshyari.com/en/article/6871558

Download Persian Version:

https://daneshyari.com/article/6871558

Daneshyari.com