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a b s t r a c t

The strong resolving graph GSR of a connected graph G was introduced in Oellermann and
Peters-Fransen (2007) as a tool to study the strong metric dimension of G. Basically, it was
shown that the problem of finding the strong metric dimension of G can be transformed to
the problem of finding the vertex cover number of GSR. Since then, several articles on the
strongmetric dimension of graphswhich are using this tool have been published. However,
the tool itself has remained unnoticed as a properly structure. In this paper, we survey
the state of knowledge on the strong resolving graphs, and also derive some new results
regarding its properties.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphs are basic combinatorial structures, and transformations of structures are fundamental to the development of
mathematics. Particularly, in graph theory, some elementary transformations generate a new graph from an original one
by some simple local changes, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge
contraction, etc. Other advanced transformations create a new graph from the original one by complex changes, such as
complement graph, line graph, total graph, graph power, dual graph, strong resolving graph, etc.

Some of these transformations of graphs emerged as a natural tool to solve practical problems. In other cases, the problem
of finding a specific parameter of a graph has become the problem of finding another parameter of another graph obtained
from the original one. This is the case of the strong resolving graph GSR of a connected graph Gwhich was introduced in [33]
as a tool to study the strong metric dimension of G. Basically, it was shown that the problem of finding the strong metric
dimension of G can be transformed to the problem of finding the vertex cover number of GSR. Since then, several articles
dealing with the strong resolving graph have been published. However, in almost all these works the results related to the
strong resolving graph are not explicit, as they implicitly appear as a part of the proofs of main results concerning the strong
metric dimension. In this sense, this interesting construction has passed in front of researchers’s eyes without the attention
that should require. In this paper, we would like to motivate the graph theory community to have a deeper look into this
graph transformation. Accordingly, herein we survey the state of knowledge on the strong resolving graph and also derive
some new results.
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For a graph transformation, there are two general problems [11], which we shall formulate in terms of strong resolving
graphs:

• Realization Problem.1 Determine which graphs have a given graph as their strong resolving graphs.
• Characterization Problem. Characterize those graphs that are strong resolving graphs of some graphs.

The majority of results presented in this paper concerns the above mentioned problems. Basically, we focus on the
following graph equation

GSR ∼= H, (1)

i.e., the goal is to find all pairs of graphs G and H satisfying (1).
The remainder of the paper is structured as follows. Section 1.1 covers general notation and terminology. Section 1.2 is

devoted to introduce the strong metric dimension, whereas Section 1.3 introduces the strong resolving graph. In Section 2
we study the realization problem for some specific families of graphs, while in Section 3we collect the known results related
to the characterization problem of product graphs. We close our exposition with a collection of open problems to be dealt
with.

1.1. Notation and terminology

We continue by establishing the basic terminology and notations which is used throughout this work. For the sake
of completeness we refer the reader to the books [6,12,38]. Graphs considered herein are undirected, finite and contain
neither loops nor multiple edges. Let G be a graph of order n = |V (G)|. A graph is nontrivial if n ≥ 2. We use the notation
u ∼ v for two adjacent vertices u and v of G. For a vertex v of G, NG(v) denotes the set of neighbors that v has in G, i.e.,
NG(v) = {u ∈ V (G) : u ∼ v}. The set NG(v) is called the open neighborhood of a vertex v in G and NG[v] = NG(v) ∪ {v} is
called the closed neighborhood of a vertex v in G. The degree of a vertex v of G is denoted by δG(v), i.e., δG(v) = |NG(v)|. The
open neighborhood of a set S of vertices of G is NG(S) =

⋃
v∈SNG(v) and the closed neighborhood of S is NG[S] = NG(S) ∪ S.

We use the notation Kn, Cn, Pn, and Nn for the complete graph, cycle, path, and empty graph, respectively. Moreover, we
write Ks,t for the complete bipartite graph of order s + t and in particular K1,n for the star of order n + 1. A vertex of degree
one in a tree T is called a leaf and the number of leaves in T is denoted by l(T ).

The distance between two vertices u and v, denoted by dG(u, v), is the length of a shortest path between u and v in
G. The diameter, D(G), of G is the largest distance between any two vertices of G and two vertices u, v ∈ V (G) such that
dG(u, v) = D(G) are called diametral. If G is not connected, then we assume that the distance between any two vertices
belonging to different components of G is infinity and, thus, its diameter is D(G) = ∞. A graph G is 2-antipodal if for each
vertex x ∈ V (G) there exists exactly one vertex y ∈ V (G) such that dG(x, y) = D(G). For instance, even cycles and hypercubes
are 2-antipodal graphs.

We recall that the complement of G is the graph Gc with the same vertex set as G and uv ∈ E(Gc) if and only if uv ̸∈ E(G).
The subgraph induced by a set X is denoted by ⟨X⟩. A vertex of a graph is a simplicial vertex if the subgraph induced by its
neighbors is a complete graph. Given a graph G, we denote by σ (G) the set of simplicial vertices of G.

A clique in G is a set of pairwise adjacent vertices. The clique number of G, denoted by ω(G), is the number of vertices in
a maximum clique in G. Two distinct vertices u, v are called true twins if NG[u] = NG[v]. In this sense, a vertex x is a twin if
there exists y ̸= x such that they are true twins. We say that X ⊂ V (G) is a twin-free clique in G if the subgraph induced by X
is a clique and for every u, v ∈ X it follows NG[u] ̸= NG[v], i.e., the subgraph induced by X is a clique and it contains no true
twins. The twin-free clique number of G, denoted by ϖ (G), is the maximum cardinality among all twin-free cliques in G. So,
ω(G) ≥ ϖ (G). We refer to a ϖ (G)-set in a graph G as a twin-free clique of cardinality ϖ (G). Fig. 1 shows examples of basic
concepts such as true twins and twin-free clique.

For the remainder of the paper, definitions will be introduced whenever a concept is needed.

1.2. Strong metric dimension of graphs

A vertex w ∈ V (G) strongly resolves two different vertices u, v ∈ V (G) if dG(w, u) = dG(w, v) + dG(v, u) or dG(w, v) =

dG(w, u) + dG(u, v), i.e., there exists some shortest w − u path containing v or some shortest w − v path containing u. A set
S of vertices in a connected graph G is a strong metric generator for G if every two vertices of G are strongly resolved by some
vertex in S. The minimum cardinality among all strong metric generators for G is called the strong metric dimension and is
denoted by dims(G). A strong metric basis of G is a strong metric generator for G of cardinality dims(G).

Several researches on the strong metric dimension of graphs have recently been developed. For instance, the trivial
bounds 1 ≤ dims(G) ≤ n − 1 are known from the first works as well as characterizations on whether they are achieved.
Moreover, it has been noticed that the strong metric dimension of several graphs can be straightforwardly computed for
some basic examples which we next remark.

1 This problem was called Determination Problem in [11].
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