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a b s t r a c t

An integer k-matching of a graph G is a function f that assigns to each edge an integer in
{0, 1, . . . , k} such that

∑
e∈Γ (v)f (e) ≤ k for each v ∈ V (G). The k-matching number of G is

the maximum number of
∑

e∈E(G)f (e) over all k-matchings f . In this paper, when k is even,
we give a relationship between some special fractionalmatchings and integer k-matchings,
and thenwe obtain a formula for k-matching number by using fractional matching number
and all the maximum integer k-matchings with the maximum number of edges assigned 0
(named 0-edges) can be constructed by using the algorithms given by Pulleyblank (1987)
for generating some special fractionalmatchings.When k is odd,we obtain someproperties
of the maximum k-matchings with the maximum number of 0-edges.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

All graphs considered are finite and undirected. Let G be a graph, v ∈ V (G) and Γ (v) the set of edges incident with v. A
matching of G is a subset of E(G) in which no two edges are adjacent, equivalently, a matching is a function x : E(G) → {0, 1}
such that

∑
e∈Γ (v)x(e) ≤ 1 for each vertex v. Clearly,

∑
e∈E(G)x(e) ≤

|V (G)|
2 . Thematching number of G, denoted by µ(G), is the

maximum number of
∑

e∈E(G)x(e) over all matchings x. A matching ismaximum if
∑

e∈E(G)x(e) = µ(G). A matching x is perfect
if

∑
e∈Γ (v)x(e) = 1 for each vertex v (i.e., v is x-saturated).

Fractional matching is a kind of relaxation of matching. A fractional matching of G is a function g : E(G) → [0, 1] such that∑
e∈Γ (v)g(e) ≤ 1 for each vertex v. The fractional matching number of G, denoted by µf (G), is the supremum of

∑
e∈E(G)g(e)

over all fractional matchings g . A fractional matching g is maximum if
∑

e∈E(G)g(e) = µf (G). A vertex v of G is saturated by a
fractional matching g or v is g-saturated if

∑
e∈Γ (v)g(e) = 1, otherwise, v is g-unsaturated.

Balinski [1] showed that a fractional matching g is a vertex of the polytope {f : f (e) ∈ [0, 1] for each edge e and∑
e∈Γ (v)f (e) ≤ 1 for each vertex v} if and only if g(e) ∈ {0, 1

2 , 1} for each e ∈ E(G) and the edges e having g(e) =
1
2 (named

1
2−edges) form vertex disjoint odd cycles of G. Such fractional matchings (which are a vertex of the polytope) are called
basic. In fact, there exists a basic fractional matching for any graph ([9] See Theorem 2.1.5). If g is a basic fractional matching,
then either

∑
e∈Γ (v)g(e) = 1 (i.e., v is g-saturated) or

∑
e∈Γ (v)g(e) = 0 for each vertex v of G. Let g be a fractional matching.

The support of a fractional matching g is the subset S(g) of E(G) consisting of all edges e having g(e) ̸= 0. Then for a basic
fractional matching g , each component of the subgraph induced by S(g) is either a single edge (i.e., a pair of vertices joined
by an edge) or an odd cycle. We say that the subset of edges e such that g(e) = 1 (named 1-edges) is the integer part of g ,
denoted by I(g), and S(g) − I(g) is the fractional part of g , denoted by F (g).
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In 1965, Gallai and Edmonds [6] gave a decomposition of a graph according to maximum matchings, named Gallai–
Edmonds Structure Theorem (see Proposition 1.1). Pulleyblank [8] defined a U-fractional matching and an M-fractional
matching. A U-fractional matching is a basic fractional matching g with the maximum number of saturated vertices such
that F (g) is minimal. An M-fractional matching is a basic fractional matching with the maximum number of saturated
vertices such that |F (g)| is minimum. It is easy to see that everyM-fractional matching is a U-fractional matching. In [8], the
structures of U-fractional matchings and M-fractional matchings are characterized by using the Gallai–Edmonds Structure
Theorem. Thus all M-fractional matchings can be constructed by using the algorithms in [8].

Integer k-matching is a kind of generalization of matching. Let k be an integer. A k-matching of a graph G is a function
h : E(G) → {0, 1, 2, . . . , k} such that

∑
e∈Γ (v)h(e) ≤ k for each vertex v. A vertex v of G is saturated by a k-matching h or v is

h-saturated if
∑

e∈Γ (v)h(e) = k, otherwise, v is h-unsaturated. The k-matching number ofG, denoted byµk(G), is themaximum
number of

∑
e∈E(G)h(e) over all k-matchings h. Then µk(G) ≤

k|V (G)|
2 . A k-matching h is maximum if

∑
e∈E(G)h(e) = µk(G). A

k-matching h is perfect if every vertex is h-saturated. Then a k-matching h is perfect if and only if
∑

e∈E(G)h(e) =
k|V (G)|

2 .
In 2014, H. Lu and W. Wang [7] studied the perfect k-matching of general graphs and gave a sufficient and necessary

condition for its existence. However, the problems about the structure of some special maximum k-matchings are open.
In this paper, we characterize the structure of the maximum k-matchings with the maximum number of 0-edges. When
k is even, we give a relationship between some special fractional matchings and integer k-matchings and then we obtain
a formula for k-matching number by using fractional matching number and all the maximum integer k-matchings with
the maximum number of 0-edges can be constructed by using the algorithms for generating special fractional matchings
given by Pulleyblank [8]. When k is odd, the problem is open. Anyhow, we characterize the maximum k-matchings with the
maximum number of 0-edges and obtain some results.

In the following, we introduce the Gallai–Edmonds decomposition. Let D(G) be the set of vertices of G which are missed
by at least one maximum matching of G, and A(G) the set of vertices in V (G) − D(G) adjacent to at least one vertex in D(G).
Finally, let C(G) = V (G) − A(G) − D(G). A graph G is said to be factor-critical if G − v has a perfect matching for any vertex
v ∈ V (G). A matching is said to be a near-perfect matching if it covers all vertices but one. The number of components of a
graph G is denoted by c(G). The subgraph of G induced by a vertex subset S is denoted by ⟨S⟩.

Proposition 1.1 ([6] Gallai–Edmonds Structure Theorem). Let D(G), A(G), and C(G) be defined as above. Then
(1) Every component of ⟨D(G)⟩ is factor-critical.
(2) The subgraph ⟨C(G)⟩ has a perfect matching.
(3) A matching of G is maximum if and only if it consists of a near-perfect matching of each component of ⟨D(G)⟩, a perfect

matching of ⟨C(G)⟩, and a matching which matches every vertex in A(G) to one of distinct components of D(G).
(4) µ(G) =

1
2 [|V (G)| − c(⟨D(G)⟩) + |A(G)|].

For a maximum matching M and a component Gi of ⟨D(G)⟩, we say that Gi is M-full if some vertex of Gi is matched with
a vertex in A(G), that is, every vertex of Gi is M-saturated, otherwise, Gi is M-near full. The number of nontrivial M-near full
components is denoted by nc(M). Let nc(G) = max{nc(M) | M is a maximummatching}.

Proposition 1.2 ([4]). For any graph G,

µf (G) = µ(G) +
nc(G)
2

.

Now, we study the condition such that nc(M) = nc(G) for a maximum matching M . Let D0 be the set of vertices in D(G)
which form trivial components of ⟨D(G)⟩ and N(D0) the neighbor set of D0. Then N(D0) ⊆ A(G). Let D0(M) = {v ∈ D0 | v is
anM-near full component of ⟨D(G)⟩}. Then c(⟨D(G)⟩) = |A(G)| + |D0(M)| + nc(M) since the number ofM-full components of
⟨D(G)⟩ is |A(G)|. Thus nc(M) is maximum if and only if |D0(M)| is minimum, equivalently, |D0 −D0(M)| ( which is the number
ofM-saturated vertices in D0) is maximum. So it implies the following proposition.

Proposition 1.3. Let G be a graph, M a maximum matching of G and D0 defined as above. Then nc(M) = nc(G) if and only if M
induces a maximum matching of ⟨D0

⋃
N(D0)⟩.

2. Some results on fractional matchings

Recently, some results about the fractional matching number are obtained (see [2,3,10]). In this section, we study some
special maximum fractional matchings which are useful for studying k-matchings. A maximum fractional matching g is said
to be H-fractional matching if g has the maximum number of 0-edges.

Lemma 2.1 ([5]). For any graph G, any H-fractional matching of G is basic.

Lemma 2.2 ([8]). Let G be a graph, (D(G), A(G), C(G)) the Gallai–Edmonds partition of G and g anM-fractional matching. Then
(1) g induces a perfect matching of ⟨C(G)⟩.
(2) For each u ∈ A(G), there exists v ∈ D(G) adjacent to u such that g(uv) = 1.
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