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a b s t r a c t

The strong chromatic index of a graph G, denoted by χ ′
s(G), is the least number of colors

needed to edge-color G properly so that every path of length 3 uses three different colors.
In this paper, we prove that if G is a graph with ∆(G) = 4 and maximum average degree
less than 61

18 (resp. 72 ,
18
5 , 15

4 , 51
13 ), then χ ′

s(G) ≤ 16 (resp.17, 18, 19, 20), which improves the
results of Bensmail et al. (2015).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A strong edge-coloring of a graph G is a proper edge-coloring of G such that the edges of any path of length 3 use three
different colors. It follows that each color class of a strong edge-coloring is an induced matching. The strong chromatic
index of a graph G, denoted by χ ′

s(G), is the smallest integer k such that G can be strongly edge-colored with k colors. The
concept of strong edge-coloringwas introduced by Fouquet and Jolivet in [8,9] and can be used tomodel conflict-free channel
assignment in radio networks in [16,17].

In 1985, Erdős and Nešetřil proposed the following interesting conjecture.

Conjecture 1.1 ([7]). For a graph G with maximum degree ∆,

χ ′

s(G) ≤

⎧⎪⎨⎪⎩
5
4
∆2, if ∆ is even;

1
4
(5∆2

− 2∆ + 1), if ∆ is odd.

When ∆ ≤ 3, Conjecture 1.1 has been verified by Andersen [1], and independently by Horák, Qing, and Trotter [13].
When ∆ is sufficiently large, Molloy and Reed in [15] proved that χ ′

s(G) ≤ 1.998∆(G)2, using probabilistic techniques. This
bound is improved to 1.93∆2 by Bruhn and Joos [4], and very recently, is further improved to 1.835∆2 by Bonamy, Perrett,
and Postle [3].

The maximum average degree of a graph G, mad(G), is defined to be the maximum average degree over all subgraphs
of G. Hocquard et al. [11,12] and DeOrsey et al. [6] studied the strong chromatic index of subcubic graphs with bounded
maximum average degree.
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We study graphswithmaximumdegree 4, which are conjectured to be colorable with atmost 20 colors in Conjecture 1.1.
Cranston [5] showed that 22 colors suffice, which is improved to 21 colors very recently by Huang, Santana and the third
author [14]. However, it is still not clear if 20 colors suffice even if theminimumdegree of such graphs is 3. Bensmail, Bonamy,
and Hocquard [2] studied the strong chromic index of graphs with maximum degree four and bounded maximum average
degrees.

Theorem 1.2 (Bensmail, Bonamy, and Hocquard [2]). For every graph G with ∆ = 4,

(1) If mad(G) < 16
5 , then χ ′

s(G) ≤ 16.
(2) If mad(G) < 10

3 , then χ ′
s(G) ≤ 17.

(3) If mad(G) < 17
5 , then χ ′

s(G) ≤ 18.
(4) If mad(G) < 18

5 , then χ ′
s(G) ≤ 19.

(5) If mad(G) < 19
5 , then χ ′

s(G) ≤ 20.

In this paper, we improve the results from [2] as follows.

Theorem 1.3. For every graph G with ∆ = 4, each of the following holds.

(1) If mad(G) < 61
18 , then χ ′

s(G) ≤ 16.
(2) If mad(G) < 7

2 , then χ ′
s(G) ≤ 17.

(3) If mad(G) < 18
5 , then χ ′

s(G) ≤ 18.
(4) If mad(G) < 15

4 , then χ ′
s(G) ≤ 19.

(5) If mad(G) < 51
13 , then χ ′

s(G) ≤ 20.

From the proof of Theorem 1.3(5), we obtain the following corollary, which implies Conjecture 1.1 is true in some spacial
cases.

Corollary 1.4. For every graph G with ∆ = 4, if there are two 3-vertices whose distance is at most 4, then χ ′
s(G) ≤ 20.

We end this section with notation and terminology. Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set
E(G), and let dG(v) denote the degree of a vertex v in a graph G. We use V , E and d(v) for V (G), E(G) and dG(v), respectively, if it
is understood from the context. Denote by d(u, v) the distance between vertices u and v ofG. A vertex is a k-vertex (k−-vertex)
if it is of degree k (at most k). Similarly, a neighbor of a vertex v is a k-neighbor of v if it is of degree k. A 4-vertex is special if it
is adjacent to a 2-vertex. A 3-vertex is a 3k-vertex if it is adjacent to k 3-vertices, where k = 0, 1, 2. A 4k-vertex is a 4-vertex
adjacent to exactly k 3-vertices. Denote by N(v) the neighborhood of the vertex v, let Ni(v) = {u ∈ V (G) : d(u, v) = i} for
i ≥ 1. For simplicity, N0(v) = {v} and N1(v) = N(v). Let Li(v) = ∪

i
j=0Nj(v) and D3(G) = {v ∈ V (G) : d(v) = 3}. For a graph

G = (V , E) and E ′
⊆ E, G has a partial edge-coloring if G[E ′

] has a strong edge-coloring, where G[E ′
] is the graph with vertex

set V and edge set E ′.
In the proof of Theorem 1.3, the well known result of Hall [10] is applied in terms of systems of distinct representatives.

Theorem 1.5 ([10]). Let A1, . . . , An be n subsets of a set U. A system of distinct representatives of {A1, . . . , An} exists if and only
if for all k, 1 ≤ k ≤ n and every subcollection of size k, {Ai1 , . . . , Aik}, we have |Ai1 ∪ · · · ∪ Aik | ≥ k.

2. Proof of Theorem 1.3

Let H be a counterexample to Theorem 1.3 with |V (H)| + |E(H)| minimized. That is, for some

(m, k) ∈ {(
61
18

, 16), (
7
2
, 17), (

18
5

, 18), (
15
4

, 19), (
51
13

, 20)}

we havemad(H) < m and χ ′
s(H) > k.

By the minimality of H , χ ′
s(H − e) ≤ k for each e ∈ E(H), and we may assume that H is connected. Denote by

[k] = {1, 2, . . . , k} the set of colors. If e = uv is an uncolored edge in a partial coloring of H , then let LH (e) be the set of
colors that is used on the edges incident to a vertex in NH (u) ∪ NH (v), and let L′

H (e) = [k] \ LH (e). We write L(e) and L′(e) for
LH (e) and L′

H (e), respectively, if it is clear from the context. We now establish some properties of H .

Lemma 2.1. Let x be a vertex of H with d(x) = d. If the edges incident to x can be ordered as xy1, xy2, . . . , xyd such that in a
partial k-coloring of H − x, |L(xyi)| ≤ k − i, then the partial coloring can be extended to H. In particular,

(a) There is no 1-vertex in H, and if k ≥ 17, then there is no 2-vertex in H.
(b) Each 2-vertex x in H has two 4-neighbors, each of which is adjacent to three 4-vertices.
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