On strong edge-coloring of graphs with maximum degree 4

Jian-Bo Lv ${ }^{\text {a }}$, Xiangwen Li ${ }^{\mathrm{a}, *}$, Gexin $\mathrm{Yu}^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, The College of William and Mary, Williamsburg, VA, 23185, USA

ARTICLE INFO

Article history:

Received 8 September 2016
Received in revised form 8 September 2017
Accepted 11 September 2017
Available online xxxx

Keywords:

Strong edge-coloring
Strong chromatic index
Maximum average degree
Sparse graphs

Abstract

The strong chromatic index of a graph G, denoted by $\chi_{s}^{\prime}(G)$, is the least number of colors needed to edge-color G properly so that every path of length 3 uses three different colors. In this paper, we prove that if G is a graph with $\Delta(G)=4$ and maximum average degree less than $\frac{61}{18}$ (resp. $\frac{7}{2}, \frac{18}{5}, \frac{15}{4}, \frac{51}{13}$), then $\chi_{s}^{\prime}(G) \leq 16$ (resp.17, 18, 19, 20), which improves the results of Bensmail et al. (2015).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A strong edge-coloring of a graph G is a proper edge-coloring of G such that the edges of any path of length 3 use three different colors. It follows that each color class of a strong edge-coloring is an induced matching. The strong chromatic index of a graph G, denoted by $\chi_{s}^{\prime}(G)$, is the smallest integer k such that G can be strongly edge-colored with k colors. The concept of strong edge-coloring was introduced by Fouquet and Jolivet in [8,9] and can be used to model conflict-free channel assignment in radio networks in [16,17].

In 1985, Erdős and Nešetřil proposed the following interesting conjecture.
Conjecture 1.1 ([7]). For a graph G with maximum degree Δ,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { if } \Delta \text { is even } \\ \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right), & \text { if } \Delta \text { is odd }\end{cases}
$$

When $\Delta \leq 3$, Conjecture 1.1 has been verified by Andersen [1], and independently by Horák, Qing, and Trotter [13]. When Δ is sufficiently large, Molloy and Reed in [15] proved that $\chi_{s}^{\prime}(G) \leq 1.998 \Delta(G)^{2}$, using probabilistic techniques. This bound is improved to $1.93 \Delta^{2}$ by Bruhn and Joos [4], and very recently, is further improved to $1.835 \Delta^{2}$ by Bonamy, Perrett, and Postle [3].

The maximum average degree of a graph $G, \operatorname{mad}(G)$, is defined to be the maximum average degree over all subgraphs of G. Hocquard et al. [11,12] and DeOrsey et al. [6] studied the strong chromatic index of subcubic graphs with bounded maximum average degree.

[^0]We study graphs with maximum degree 4 , which are conjectured to be colorable with at most 20 colors in Conjecture 1.1. Cranston [5] showed that 22 colors suffice, which is improved to 21 colors very recently by Huang, Santana and the third author [14]. However, it is still not clear if 20 colors suffice even if the minimum degree of such graphs is 3 . Bensmail, Bonamy, and Hocquard [2] studied the strong chromic index of graphs with maximum degree four and bounded maximum average degrees.

Theorem 1.2 (Bensmail, Bonamy, and Hocquard [2]). For every graph G with $\Delta=4$,
(1) If $\operatorname{mad}(G)<\frac{16}{5}$, then $\chi_{s}^{\prime}(G) \leq 16$.
(2) If $\operatorname{mad}(G)<\frac{10}{3}$, then $\chi_{s}^{\prime}(G) \leq 17$.
(3) If $\operatorname{mad}(G)<\frac{17}{5}$, then $\chi_{s}^{\prime}(G) \leq 18$.
(4) If $\operatorname{mad}(G)<\frac{18}{5}$, then $\chi_{s}^{\prime}(G) \leq 19$.
(5) If $\operatorname{mad}(G)<\frac{19}{5}$, then $\chi_{s}^{\prime}(G) \leq 20$.

In this paper, we improve the results from [2] as follows.
Theorem 1.3. For every graph G with $\Delta=4$, each of the following holds.
(1) If $\operatorname{mad}(G)<\frac{61}{18}$, then $\chi_{s}^{\prime}(G) \leq 16$.
(2) If $\operatorname{mad}(G)<\frac{7}{2}$, then $\chi_{s}^{\prime}(G) \leq 17$.
(3) If $\operatorname{mad}(G)<\frac{18}{5}$, then $\chi_{s}^{\prime}(G) \leq 18$.
(4) If $\operatorname{mad}(G)<\frac{15}{4}$, then $\chi_{s}^{\prime}(G) \leq 19$.
(5) If $\operatorname{mad}(G)<\frac{51}{13}$, then $\chi_{s}^{\prime}(G) \leq 20$.

From the proof of Theorem 1.3(5), we obtain the following corollary, which implies Conjecture 1.1 is true in some spacial cases.

Corollary 1.4. For every graph G with $\Delta=4$, if there are two 3-vertices whose distance is at most 4 , then $\chi_{s}^{\prime}(G) \leq 20$.
We end this section with notation and terminology. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$, and let $d_{G}(v)$ denote the degree of a vertex v in a graph G. We use V, E and $d(v)$ for $V(G), E(G)$ and $d_{G}(v)$, respectively, if it is understood from the context. Denote by $d(u, v)$ the distance between vertices u and v of G. A vertex is a k-vertex (k^{-}-vertex) if it is of degree k (at most k). Similarly, a neighbor of a vertex v is a k-neighbor of v if it is of degree k. A 4-vertex is special if it is adjacent to a 2 -vertex. A 3 -vertex is a 3_{k}-vertex if it is adjacent to $k 3$-vertices, where $k=0,1,2$. A 4_{k}-vertex is a 4 -vertex adjacent to exactly k 3-vertices. Denote by $N(v)$ the neighborhood of the vertex v, let $N_{i}(v)=\{u \in V(G): d(u, v)=i\}$ for $i \geq 1$. For simplicity, $N_{0}(v)=\{v\}$ and $N_{1}(v)=N(v)$. Let $L_{i}(v)=\cup_{j=0}^{i} N_{j}(v)$ and $D_{3}(G)=\{v \in V(G): d(v)=3\}$. For a graph $G=(V, E)$ and $E^{\prime} \subseteq E, G$ has a partial edge-coloring if $G\left[E^{\prime}\right]$ has a strong edge-coloring, where $G\left[E^{\prime}\right]$ is the graph with vertex set V and edge set E^{\prime}.

In the proof of Theorem 1.3, the well known result of Hall [10] is applied in terms of systems of distinct representatives.
Theorem 1.5 ([10]). Let A_{1}, \ldots, A_{n} be n subsets of a set U. A system of distinct representatives of $\left\{A_{1}, \ldots, A_{n}\right\}$ exists if and only if for all $k, 1 \leq k \leq n$ and every subcollection of size $k,\left\{A_{i_{1}}, \ldots, A_{i_{k}}\right\}$, we have $\left|A_{i_{1}} \cup \cdots \cup A_{i_{k}}\right| \geq k$.

2. Proof of Theorem 1.3

Let H be a counterexample to Theorem 1.3 with $|V(H)|+|E(H)|$ minimized. That is, for some

$$
(m, k) \in\left\{\left(\frac{61}{18}, 16\right),\left(\frac{7}{2}, 17\right),\left(\frac{18}{5}, 18\right),\left(\frac{15}{4}, 19\right),\left(\frac{51}{13}, 20\right)\right\}
$$

we have $\operatorname{mad}(H)<m$ and $\chi_{s}^{\prime}(H)>k$.
By the minimality of $H, \chi_{s}^{\prime}(H-e) \leq k$ for each $e \in E(H)$, and we may assume that H is connected. Denote by $[k]=\{1,2, \ldots, k\}$ the set of colors. If $e=u v$ is an uncolored edge in a partial coloring of H, then let $L_{H}(e)$ be the set of colors that is used on the edges incident to a vertex in $N_{H}(u) \cup N_{H}(v)$, and let $L_{H}^{\prime}(e)=[k] \backslash L_{H}(e)$. We write $L(e)$ and $L^{\prime}(e)$ for $L_{H}(e)$ and $L_{H}^{\prime}(e)$, respectively, if it is clear from the context. We now establish some properties of H.

Lemma 2.1. Let x be a vertex of H with $d(x)=d$. If the edges incident to x can be ordered as $x y_{1}, x y_{2}, \ldots, x y_{d}$ such that in a partial k-coloring of $H-x,\left|L\left(x y_{i}\right)\right| \leq k-i$, then the partial coloring can be extended to H. In particular,
(a) There is no 1 -vertex in H, and if $k \geq 17$, then there is no 2-vertex in H.
(b) Each 2-vertex x in H has two 4-neighbors, each of which is adjacent to three 4-vertices.

https://daneshyari.com/en/article/6871665

Download Persian Version:

https://daneshyari.com/article/6871665

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: xwli68@mail.ccnu.edu.cn (X. Li).

