On the signless Laplacian Estrada index of bicyclic graphs

Kun Wang ${ }^{\text {a }}$, Wenjie Ning ${ }^{\text {b,* }}$, Mei Lu ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Anhui University, Hefei 230601, China
${ }^{\text {b }}$ College of Science, China University of Petroleum (East China), Qingdao 266580, China
${ }^{\text {c }}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history:

Received 26 March 2017
Received in revised form 9 September 2017
Accepted 11 September 2017
Available online xxxx

Keywords:

Estrada index
Signless Laplacian Estrada index
Semi-edge walk
Bicyclic graph
Bipartite graph

Abstract

The signless Laplacian Estrada index of a graph is defined as $\operatorname{SLEE}(G)=\sum_{i=1}^{n} e^{q_{i}}$, where $q_{1}, q_{2}, \ldots, q_{n}$ are the eigenvalues of the signless Laplacian matrix of G. In this paper, we determine the unique bicyclic graph with maximum SLEE and the unique bipartite bicyclic graph with maximum SLEE, respectively.

© 2017 Published by Elsevier B.V.

1. Introduction

In this paper, a graph means a simple undirected graph. Let $G=(V, E)$ be a graph with n vertices and m edges. Let $N_{G}(v)$ be the set of vertices adjacent to v in G. The degree of v in G, denoted by $d_{G}(v)$, is equal to $\left|N_{G}(v)\right|$. A vertex of degree one is called a pendent vertex. The edge incident with a pendent vertex is known as a pendent edge.

Let $A(G)$ be the adjacency matrix of G and $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the diagonal matrix of vertex degrees. Then the signless Laplacian matrix of G is $Q(G)=D(G)+A(G)$ and the Laplacian matrix of G is $L(G)=D(G)-A(G)$. It is obvious that $A(G), Q(G)$ and $L(G)$ are real symmetric matrices. Thus their eigenvalues are real numbers. We denote the eigenvalues of $A(G), Q(G)$ and $L(G)$ by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, q_{1}, q_{2}, \ldots, q_{n}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, respectively.

For a graph G, the Estrada index of G is defined as

$$
E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}} .
$$

It was first proposed as a measure of the degree of folding of a protein [6] and has found multiple applications in a large variety of problems, including those in biochemistry and in complex networks, see [7-11]. Fath-Tabar et al. [12] generalized it to the Laplacian Estrada index, which is defined as

$$
\operatorname{LEE}(G)=\sum_{i=1}^{n} e^{\mu_{i}}
$$

[^0]Various mathematical properties of $E E$ and $L E E$ have been discussed by several authors (see [3,15,16,19-21]). Ayyaswamy et al. [1] defined the signless Laplacian Estrada index of a graph G as

$$
\operatorname{SLEE}(G)=\sum_{i=1}^{n} e^{q_{i}}
$$

and established some lower and upper bounds for SLEE in terms of the number of vertices and number of edges. Although $\operatorname{SLEE}(G)=\operatorname{LEE}(G)$ for a bipartite graph G, it is still chemically interesting for fullerenes, fluoranthenes and other non-alternant conjugated species, in which SLEE and LEE differ.

Estimating bounds for SLEE is of great interest, and many results have been obtained. Gao and Liu in [13] gave some sharp lower bounds for SLEE in terms of the k-degree and the first Zagreb index. Gutmann et al. in [14] determined the graphs having maximum SLEE among graphs with fixed order and vertex frustration index. Ellahi et al. in [4,17] found the unique graphs with maximum SLEE among graphs with given number of cut edges, cut vertices, pendent vertices, vertex connectivity, edge connectivity and diameter. They also characterized the unicyclic graphs with the first two largest and smallest SLEE in [5]. Moreover, they in [18] showed that there are exactly two graphs having maximum SLEE among all tricyclic graphs. In this paper, we determine the unique bicyclic graph with maximum SLEE and the unique bipartite bicyclic graph with maximum SLEE, respectively.

A bicyclic graph $G=(V, E)$ is a connected graph with $|E|=|V|+1$. Obviously, there are two basic bicyclic graphs: ∞-graph and θ-graph. An ∞-graph, denoted by $\infty(p, q, l)$, is obtained from two vertex-disjoint cycles C_{p} and C_{q} by connecting one vertex of C_{p} and one of C_{q} with a path of length of $l-1$ (in the case of $l=1$, identifying the above two vertices); and a θ-graph, denoted by $\theta(p, q, l)$, is a union of three internally disjoint paths $P_{p+1}, P_{q+1}, P_{l+1}$ of length p, q, l resp. with common end vertices, where $p, q, l \geq 1$ and at most one of them is 1 . Notice that any bicyclic graph G is obtained from an ∞-graph or a θ-graph G_{0} by attaching trees to some of its vertices. The graph G_{0} is called the kernel of G.

This paper is organized as follows. In Section 2, we introduce some lemmas that will be used later. In Section 3, we characterize the unique graph with maximum SLEE among all bicyclic graphs with fixed order. In Section 4, we characterize the unique bipartite bicyclic graph with the largest SLEE.

2. Lemmas

Let $T_{k}(G)$ be the k th signless Laplacian spectral moment of the graph G defined as $T_{k}(G)=\sum_{i=1}^{n} q_{i}^{k}$. Obviously, we have $T_{k}(G)=\operatorname{tr}\left(Q^{k}\right)$. By the Taylor expansion of the exponential function e^{x}, we have

$$
\operatorname{SLEE}(G)=\sum_{k=0}^{\infty} \frac{T_{k}(G)}{k!}
$$

Definition 1 ([2]). A semi-edge walk of length k in a graph G, is an alternating sequence $W=v_{1} e_{1} v_{2} e_{2} \cdots v_{k} e_{k} v_{k+1}$ of vertices $v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}$ and edges $e_{1}, e_{2}, \ldots, e_{k}$ such that for any $i=1,2, \ldots, k$, the vertices v_{i} and v_{i+1} are end-vertices (not necessarily distinct) of the edge e_{i}. We say that W starts at v_{1} and terminates at v_{k+1}. If $v_{1}=v_{k+1}$, then we say W is a closed semi-edge walk.

Theorem 2 ([2]). Let Q be the signless Laplacian matrix of a graph G. The (i, j)-entry of the matrix Q^{k} is equal to the number of semi-edge walks of length k starting at vertex i and terminating at vertex j.

Let G and H be two graphs with $x, y \in V(G)$ and $u, v \in V(H)$. Let $S W_{k}(G ; x, y)$ be the set of all semi-edge walks of length k in G, which starts at x and terminates at y, and let $\left|S W_{k}(G ; x, y)\right|=T_{k}(G ; x, y)$. If $T_{k}(G ; x, y) \leq T_{k}(H ; u, v)$ for all nonnegative k, then we write $(G ; x, y) \preceq_{s}(H ; u, v)$. If $(G ; x, y) \preceq_{s}(H ; u, v)$ and there exists some k_{0} such that $T_{k_{0}}(G ; x, y)<T_{k_{0}}(H ; u, v)$, then we write $(G ; x, y) \prec_{s}(H ; u, v)$.

Let $S W_{k}(G ; x, x)=S W_{k}(G ; x), T_{k}(G ; x, x)=T_{k}(G ; x)$ and $(G ; u, u)=(G ; u)$.
The coalescence of two vertex-disjoint connected graphs G and H, denoted by $G(u) \circ H(w)$, where $u \in V(G)$ and $w \in V(H)$, is obtained from G and H by identifying the vertex u of G with the vertex w of H.

Lemma 3 ([4]). Let G be a graph with $u, v, w_{1}, w_{2}, \ldots, w_{r} \in V(G)$. Suppose that $E_{v}=\left\{e_{1}=v w_{1}, \ldots, e_{r}=v w_{r}\right\}$ and $E_{u}=\left\{e_{1}^{\prime}=u w_{1}, \ldots, e_{r}^{\prime}=u w_{r}\right\}$ where $e_{i}, e_{i}^{\prime} \notin E(G)$, for $i=1,2, \ldots, r$. Let $G_{u}=G+E_{u}$ be the graph obtained from G by adding all edges in E_{u} and $G_{v}=G+E_{v}$ be the graph obtained from G by adding all edges in E_{v}, respectively. If $(G ; v) \prec_{s}(G ; u)$, and $\left(G ; w_{i}, v\right) \preceq_{s}\left(G ; w_{i}, u\right)$ for each $i=1,2, \ldots, r$, then $\operatorname{SLEE}\left(G_{v}\right)<\operatorname{SLEE}\left(G_{u}\right)$.

Lemma 4 ([18]). Let G be a graph and $u, v \in V(G)$. If $N_{G}(v) \subseteq N_{G}(u) \cup\{u\}$, then $(G ; v) \preceq_{s}(G ; u)$, and $(G ; w, v) \preceq_{s}(G ; w, u)$ for each $w \in V(G) \backslash\{v\}$. Moreover, if $d_{G}(v)<d_{G}(u)$, then $(G ; v) \prec_{S}(G ; u)$.

By Lemmas 3 and 4, we easily obtain the following two corollaries.
Corollary 5. Let H_{1} and H_{2} be two graphs with $u, v \in V\left(H_{1}\right)$ and $w \in V\left(H_{2}\right)$. Let $G_{v}=H_{1}(v) \circ H_{2}(w)$ and $G_{u}=H_{1}(u) \circ H_{2}(w)$. If $\left(H_{1} ; v\right) \prec_{s}\left(H_{1}, u\right)$, then $\operatorname{SLEE}\left(G_{v}\right)<\operatorname{SLEE}\left(G_{u}\right)$.

https://daneshyari.com/en/article/6871677

Download Persian Version:

https://daneshyari.com/article/6871677

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: wangkun26@163.com (K. Wang), ningwenjie-0501@163.com (W. Ning), mlu@math.tsinghua.edu.cn (M. Lu).

