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a b s t r a c t

The signless Laplacian Estrada index of a graph is defined as SLEE(G) =
∑n

i=1e
qi , where

q1, q2, . . . , qn are the eigenvalues of the signless Laplacian matrix of G. In this paper, we
determine the unique bicyclic graph with maximum SLEE and the unique bipartite bicyclic
graph with maximum SLEE, respectively.

© 2017 Published by Elsevier B.V.

1. Introduction

In this paper, a graph means a simple undirected graph. Let G = (V , E) be a graph with n vertices andm edges. Let NG(v)
be the set of vertices adjacent to v in G. The degree of v in G, denoted by dG(v), is equal to |NG(v)|. A vertex of degree one is
called a pendent vertex. The edge incident with a pendent vertex is known as a pendent edge.

Let A(G) be the adjacency matrix of G and D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees. Then
the signless Laplacian matrix of G is Q (G) = D(G) + A(G) and the Laplacian matrix of G is L(G) = D(G) − A(G). It is obvious
that A(G), Q (G) and L(G) are real symmetric matrices. Thus their eigenvalues are real numbers. We denote the eigenvalues
of A(G), Q (G) and L(G) by λ1, λ2, . . . , λn, q1, q2, . . . , qn and µ1, µ2, . . . , µn, respectively.

For a graph G, the Estrada index of G is defined as

EE(G) =

n∑
i=1

eλi .

It was first proposed as a measure of the degree of folding of a protein [6] and has found multiple applications in a large
variety of problems, including those in biochemistry and in complex networks, see [7–11]. Fath-Tabar et al. [12] generalized
it to the Laplacian Estrada index, which is defined as

LEE(G) =

n∑
i=1

eµi .
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Various mathematical properties of EE and LEE have been discussed by several authors (see [3,15,16,19–21]). Ayyaswamy
et al. [1] defined the signless Laplacian Estrada index of a graph G as

SLEE(G) =

n∑
i=1

eqi

and established some lower and upper bounds for SLEE in terms of the number of vertices and number of edges. Although
SLEE(G) = LEE(G) for a bipartite graphG, it is still chemically interesting for fullerenes, fluoranthenes andother non-alternant
conjugated species, in which SLEE and LEE differ.

Estimating bounds for SLEE is of great interest, and many results have been obtained. Gao and Liu in [13] gave some
sharp lower bounds for SLEE in terms of the k-degree and the first Zagreb index. Gutmann et al. in [14] determined the
graphs having maximum SLEE among graphs with fixed order and vertex frustration index. Ellahi et al. in [4,17] found the
unique graphs with maximum SLEE among graphs with given number of cut edges, cut vertices, pendent vertices, vertex
connectivity, edge connectivity and diameter. They also characterized the unicyclic graphs with the first two largest and
smallest SLEE in [5]. Moreover, they in [18] showed that there are exactly two graphs having maximum SLEE among all
tricyclic graphs. In this paper, we determine the unique bicyclic graph with maximum SLEE and the unique bipartite bicyclic
graph with maximum SLEE, respectively.

A bicyclic graphG = (V , E) is a connected graphwith |E| = |V |+1. Obviously, there are twobasic bicyclic graphs:∞-graph
and θ-graph. An ∞-graph, denoted by ∞(p, q, l), is obtained from two vertex-disjoint cycles Cp and Cq by connecting one
vertex of Cp and one of Cq with a path of length of l − 1 (in the case of l = 1, identifying the above two vertices); and a
θ-graph, denoted by θ (p, q, l), is a union of three internally disjoint paths Pp+1, Pq+1, Pl+1 of length p, q, l resp. with common
end vertices, where p, q, l ≥ 1 and at most one of them is 1. Notice that any bicyclic graph G is obtained from an ∞-graph
or a θ-graph G0 by attaching trees to some of its vertices. The graph G0 is called the kernel of G.

This paper is organized as follows. In Section 2, we introduce some lemmas that will be used later. In Section 3, we
characterize the unique graph with maximum SLEE among all bicyclic graphs with fixed order. In Section 4, we characterize
the unique bipartite bicyclic graph with the largest SLEE.

2. Lemmas

Let Tk(G) be the kth signless Laplacian spectral moment of the graph G defined as Tk(G) =
∑n

i=1q
k
i . Obviously, we have

Tk(G) = tr(Q k). By the Taylor expansion of the exponential function ex, we have

SLEE(G) =

∞∑
k=0

Tk(G)
k!

.

Definition 1 ([2]). A semi-edgewalk of length k in a graphG, is an alternating sequenceW = v1e1v2e2 · · · vkekvk+1 of vertices
v1, v2, . . . , vk, vk+1 and edges e1, e2, . . . , ek such that for any i = 1, 2, . . . , k, the vertices vi and vi+1 are end-vertices (not
necessarily distinct) of the edge ei. We say thatW starts at v1 and terminates at vk+1. If v1 = vk+1, then we sayW is a closed
semi-edge walk.

Theorem 2 ([2]). Let Q be the signless Laplacian matrix of a graph G. The (i, j)-entry of the matrix Q k is equal to the number of
semi-edge walks of length k starting at vertex i and terminating at vertex j.

Let G and H be two graphs with x, y ∈ V (G) and u, v ∈ V (H). Let SWk(G; x, y) be the set of all semi-edge walks of length k
in G, which starts at x and terminates at y, and let |SWk(G; x, y)| = Tk(G; x, y). If Tk(G; x, y) ≤ Tk(H; u, v) for all nonnegative
k, then we write (G; x, y) ⪯s (H; u, v). If (G; x, y) ⪯s (H; u, v) and there exists some k0 such that Tk0 (G; x, y) < Tk0 (H; u, v),
then we write (G; x, y) ≺s (H; u, v).

Let SWk(G; x, x) = SWk(G; x), Tk(G; x, x) = Tk(G; x) and (G; u, u) = (G; u).
The coalescence of two vertex-disjoint connected graphs G and H , denoted by G(u)◦H(w), where u ∈ V (G) andw ∈ V (H),

is obtained from G and H by identifying the vertex u of Gwith the vertex w of H .

Lemma 3 ([4]). Let G be a graph with u, v, w1, w2, . . . , wr ∈ V (G). Suppose that Ev = {e1 = vw1, . . . , er = vwr} and
Eu = {e′

1 = uw1, . . . , e′
r = uwr} where ei, e′

i ̸∈ E(G), for i = 1, 2, . . . , r. Let Gu = G + Eu be the graph obtained from G by
adding all edges in Eu and Gv = G + Ev be the graph obtained from G by adding all edges in Ev , respectively. If (G; v) ≺s (G; u),
and (G; wi, v) ⪯s (G; wi, u) for each i = 1, 2, . . . , r, then SLEE(Gv) < SLEE(Gu).

Lemma 4 ([18]). Let G be a graph and u, v ∈ V (G). If NG(v) ⊆ NG(u)∪ {u}, then (G; v) ⪯s (G; u), and (G; w, v) ⪯s (G; w, u) for
each w ∈ V (G) \ {v}. Moreover, if dG(v) < dG(u), then (G; v) ≺s (G; u).

By Lemmas 3 and 4, we easily obtain the following two corollaries.

Corollary 5. Let H1 and H2 be two graphs with u, v ∈ V (H1) and w ∈ V (H2). Let Gv = H1(v) ◦ H2(w) and Gu = H1(u) ◦ H2(w).
If (H1; v) ≺s (H1, u), then SLEE(Gv) < SLEE(Gu).
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