On the differential and Roman domination number of a graph with minimum degree two

Sergio Bermudo
Department of Economics, Quantitative Methods and Economic History, Universidad Pablo de Olavide, ES-41013 Seville, Spain

ARTICLE INFO

Article history:

Received 29 August 2016
Received in revised form 18 July 2017
Accepted 5 August 2017
Available online xxxx

Keywords:

Differential
Roman domination number

Abstract

Let $G=(V, E)$ be a graph of order n and let $B(D)$ be the set of vertices in $V \backslash D$ that have a neighbor in the vertex set D. The differential of a vertex set D is defined as $\partial(D)=$ $|B(D)|-|D|$ and the maximum value of $\partial(D)$ for any subset D of V is the differential of G, denoted by $\partial(G)$. A Roman dominating function of G is a function $f: V \rightarrow\{0,1,2\}$ such that every vertex u with $f(u)=0$ is adjacent to a vertex v with $f(v)=2$. The weight of a Roman dominating function is the value $f(V)=\sum_{u \in V} f(u)$. The minimum weight of a Roman dominating function of a graph G is the Roman domination number of G, written $\gamma_{R}(G)$. Bermudo, et al. proved that these two parameters are complementary with respect to the order n of the graph, that is, $\partial(G)+\gamma_{R}(G)=n$. In this work we prove that, for any graph G with order $n \geq 9$ and minimum degree two, $\partial(G) \geq \frac{3 \gamma(G)}{4}$, consequently, $\gamma_{R}(G) \leq n-\frac{3 \gamma(G)}{4}$, where $\gamma(G)$ is the domination number of G. We also prove that for any graph with order $n \geq 15$, minimum degree two and without any induced tailed 5-cycle graph of seven vertices or tailed 5-cycle graph of seven vertices together with a particular edge, it is satisfied $\partial(G) \geq \frac{5 n}{17}$, consequently, $\gamma_{R}(G) \leq \frac{12 n}{17}$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a graph of order n, for every set $D \subseteq V$, let $B(D)$ be the set of vertices in $V \backslash D$ that have a neighbor in the vertex set D, and let $C(D)=V \backslash(D \cup B(D)$. The differential of D is defined as $\partial(D)=|B(D)|-|D|$, and the differential of a graph G, written $\partial(G)$, is equal to $\max \{\partial(D)$ such that $D \subseteq V\}$. The study of the mathematical properties of the differential in graphs, together with a variety of other kinds of differentials of a set, started in [14]. In particular, several bounds on the differential of a graph were given. This parameter has also been studied in [1-5,7,17], and the differential in the Cartesian product of graphs has been studied in [18]. The differential of a set D was also considered in [11], where it was denoted by $\eta(D)$.

The Roman domination number is a variant of the domination number suggested by I. Stewart [19], motivated by a problem from military history. A Roman dominating function of a graph $G=(V, E)$ is a (total) function $f: V \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v with $f(v)=2$. The weight of a Roman dominating function is the value $f(V)=\sum_{u \in V} f(u)$. The minimum weight of a Roman dominating function of a graph G is called the Roman domination number of G, denoted by $\gamma_{R}(G)$. This parameter (as well as related ones) has been studied by many authors. We only refer to the papers $[8-10,12,13]$ and the literature quoted therein.

These two parameters were independently studied until 2014, when Bermudo et al. [6] proved that the sum $\gamma_{R}(G)+\partial(G)$ equals the order of G, so any lower (upper) bound for one will produce an upper (lower) bound for the other. Recall that a set $D \subseteq V$ is a dominating set if $B(D)=V \backslash D$. The size of the smallest dominating set is called the domination number of

[^0]

Fig. 1. Graphs F_{1} and F_{2}.
the graph G, written as $\gamma(G)$. Favaron et al. [10] proved that $\gamma_{R}(G) \leq n-\frac{\gamma(G)}{2}$ for any graph G of order $n \geq 3$, where $\gamma(G)$ is the domination number of G, and Chambers et al. [8] proved that $\gamma_{R}(G) \leq \frac{8 n}{11}$ for any graph G with minimum degree two and order $n \geq 9$. In this work we prove that for any graph G with minimum degree two and order $n \geq 9, \partial(G) \geq \frac{3 \gamma(G)}{4}$; consequently, $\gamma_{R}(G) \leq n-\frac{3 \gamma(G)}{4}$. We also prove that $\partial(G) \geq \frac{5 n}{17}$ for any graph with order $n \geq 15$, minimum degree two, and which does not contain any induced subgraph isomorphic to F_{1} or F_{2} (see Fig. 1); consequently, $\gamma_{R}(G) \leq \frac{12 n}{17}$. This inequality is true, in particular, when the graph does not contain any induced cycle of five vertices.

We begin by stating some notation and terminology. Let $G=(V, E)$ be a simple graph of order $n=|V|$ and size $m=|E|$. We denote two adjacent vertices u and v by $u \sim v$ or $\{u, v\} \in E$. For a vertex $u \in V$ we denote $N(v)=\{u \in V: u \sim v\}$ and $N[v]=N(v) \cup\{v\}$, and given a set $S \subseteq V$ we denote $N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$. The degree of a vertex $v \in V$ will be denoted by $\delta(v)=|N(v)|$. We denote by δ and Δ the minimum and maximum degree of the graph, respectively. Any graph $\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ is a subgraph of G. A subgraph $\left(V^{\prime}, E^{\prime}\right)$ of G is an induced subgraph by V^{\prime}, written as $G\left[V^{\prime}\right]$, if $E^{\prime}=\left\{\{u, v\} \in E: u, v \in V^{\prime}\right\}$.

Notice that for every graph G with connected components $G_{1}, \ldots, G_{k}, \partial(G)=\partial\left(G_{1}\right)+\cdots \cdots+\partial\left(G_{k}\right)$. Therefore, we will only consider connected graphs.

2. Preliminary results

Recall that a graph consisting of one central vertex c and d neighbors that in turn have no further neighbors other than c is also known as a star (or d-star) $S_{d}=K_{1, d}$, whose center is c. If $X=(V, E)$ is a d-star with center c, then $V \backslash\{c\}$ will be also called ray vertices and the edges will be termed rays, in order to stay with the picture. We also denote a d-star X by $X=\left\{c ; v_{1}, \ldots, v_{d}\right\}$ to indicate that c is its center and v_{1}, \ldots, v_{d} are its ray vertices. We will call a d-star big if $d \geq 2$.

Given a graph $G=(V, E)$, a big-star packing is given by a vertex-disjoint collection $\mathcal{S}=\left\{X_{i}: 1 \leq i \leq k\right\}$ of (not necessarily induced) big stars X_{i}, i.e., the graph induced by $V\left(X_{i}\right)$, written $G\left[V\left(X_{i}\right)\right]$ for short, contains a d-star with $d=\left|V\left(X_{i}\right)\right|-1 \geq 2$. If \mathcal{S} is a big-star packing of G, we denote this property by $\mathcal{S} \in S P(G)$. We will write $\mathcal{S}(D)$ when we want to specify that D is the set of vertices which are star centers of \mathcal{S}. The set $\mathcal{S}_{2}(D)$ collects all 2 -stars from $\mathcal{S}(D)$, and $\mathcal{S}_{\geq t}(D)$ collects all d-stars from $\mathcal{S}(D)$ such that $d \geq t$. For $S \in \mathcal{S}(D)$, let $C(S, D)$ collect all vertices from $C(D)$ that are neighbors of vertices from S. For a collection $\mathcal{S} \subseteq \mathcal{S}(D)$ of stars, let $C(\mathcal{S}, D)=\bigcup_{S \in \mathcal{S}} C(S, D)$. Finally, we denote $C_{2}(D)=C(D) \backslash C\left(\mathcal{S}_{\geq 3}(D), D\right)$.

For every $\mathcal{S} \in S P(G)$ we write $\partial(\mathcal{S})=\sum_{S \in \mathcal{S}}(|S|-2)$ and call this the differential of the big-star packing \mathcal{S}. In [3] it was proved that $\partial(G)=\max \{\partial(\mathcal{S}): \mathcal{S} \in S P(G)\}$. We call a star packing $\mathcal{S} \in S P(G)$ a differential (star) packing if it assumes the differential of the graph, i.e., if $\partial(\mathcal{S})=\partial(G)$. Let $\partial S P(G)$ collect all differential packings of G. We know that given a graph, the set D giving the biggest differential is not, in general, unique. But, even if we fix the set D such that $\partial(D)=\partial(G)$, we can find different big-star packings $\mathcal{S}(D)$ and $\mathcal{S}^{\prime}(D)$ such that $\partial(\mathcal{S}(D))=\partial\left(\mathcal{S}^{\prime}(D)\right)=\partial(G)$. Since we will follow the techniques used in [3-5], we will enumerate here some conditions to choose the set D and the big-star packing $\mathcal{S}(D)$ which we will work with. We will also summarize all the results and statements contained in [3] which we will need in our proofs.

We consider the following sets

$$
\mathcal{D}_{1}(G)=\{D \subseteq V: \text { there exists } \mathcal{S}(D) \in \partial S P(G)\}
$$

and

$$
\mathcal{D}_{2}(G)=\left\{D \in \mathcal{D}_{1}(G): \forall D^{\prime} \in \mathcal{D}_{1}(G)\left(\left|D^{\prime}\right| \leq|D|\right)\right\}
$$

Throughout this paper, if $D \in \mathcal{D}_{1}(G), \mathcal{S}(D)$ will denote a big-star packing in $\partial S P(G)$. Most of the following results were proved in [3], but since we have changed some notations we will include the proofs of those which have been modified.

Lemma 2.1 ([3]). If $D \in \mathcal{D}_{1}(G)$, then the induced graph $G[C(D)]$ decomposes into K_{1} - and K_{2}-components.

Lemma 2.2 ([3]). If $D \in \mathcal{D}_{2}(G)$, then any vertex x in $B(D)$ has at most one neighbor in $C(D)$.
Lemma 2.3 ([3]). If $D \in \mathcal{D}_{2}(G)$ and $S \in \mathcal{S}(D)$ with $|V(S)| \geq 4$, then no $x \in V(S) \backslash D$ is neighbor of a K_{2}-component in $G[C(D)]$.

https://daneshyari.com/en/article/6871773

Download Persian Version:
https://daneshyari.com/article/6871773

Daneshyari.com

[^0]: E-mail address: sbernav@upo.es.
 http://dx.doi.org/10.1016/j.dam.2017.08.005
 0166-218X/© 2017 Elsevier B.V. All rights reserved.

