ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the differential and Roman domination number of a graph with minimum degree two

Sergio Bermudo

Department of Economics, Quantitative Methods and Economic History, Universidad Pablo de Olavide, ES-41013 Seville, Spain

ARTICLE INFO

Article history: Received 29 August 2016 Received in revised form 18 July 2017 Accepted 5 August 2017 Available online xxxx

Keywords: Differential Roman domination number

ABSTRACT

Let G = (V, E) be a graph of order n and let B(D) be the set of vertices in $V \setminus D$ that have a neighbor in the vertex set D. The differential of a vertex set D is defined as $\partial(D) = |B(D)| - |D|$ and the maximum value of $\partial(D)$ for any subset D of V is the differential of G, denoted by $\partial(G)$. A Roman dominating function of G is a function $f : V \rightarrow \{0, 1, 2\}$ such that every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2. The weight of a Roman dominating function is the value $f(V) = \sum_{u \in V} f(u)$. The minimum weight of a Roman dominating function of a graph G is the Roman domination number of G, written $\gamma_{R}(G)$. Bermudo, et al. proved that these two parameters are complementary with respect to the order n of the graph, that is, $\partial(G) + \gamma_{R}(G) = n$. In this work we prove that, for any graph G with order $n \geq 9$ and minimum degree two, $\partial(G) \geq \frac{3\gamma(G)}{4}$, consequently, $\gamma_{R}(G) \leq n - \frac{3\gamma(G)}{4}$, where $\gamma(G)$ is the domination number of G. We also prove that for any graph with order $n \geq 15$, minimum degree two and without any induced tailed 5-cycle graph of seven vertices or tailed 5-cycle graph of seven vertices together with a particular edge, it is satisfied $\partial(G) \geq \frac{5n}{17}$, consequently, $\gamma_{R}(G) \leq \frac{12n}{17}$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V, E) be a graph of order n, for every set $D \subseteq V$, let B(D) be the set of vertices in $V \setminus D$ that have a neighbor in the vertex set D, and let $C(D) = V \setminus (D \cup B(D))$. The differential of D is defined as $\partial(D) = |B(D)| - |D|$, and the differential of a graph G, written $\partial(G)$, is equal to max{ $\partial(D)$ such that $D \subseteq V$ }. The study of the mathematical properties of the differential in graphs, together with a variety of other kinds of differentials of a set, started in [14]. In particular, several bounds on the differential of a graph were given. This parameter has also been studied in [1–5,7,17], and the differential in the Cartesian product of graphs has been studied in [18]. The differential of a set D was also considered in [11], where it was denoted by $\eta(D)$.

The Roman domination number is a variant of the domination number suggested by I. Stewart [19], motivated by a problem from military history. A *Roman dominating function* of a graph G = (V, E) is a (total) function $f : V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value $f(V) = \sum_{u \in V} f(u)$. The minimum weight of a Roman dominating function of G, denoted by $\gamma_R(G)$. This parameter (as well as related ones) has been studied by many authors. We only refer to the papers [8–10,12,13] and the literature quoted therein.

These two parameters were independently studied until 2014, when Bermudo et al. [6] proved that the sum $\gamma_R(G) + \partial(G)$ equals the order of *G*, so any lower (upper) bound for one will produce an upper (lower) bound for the other. Recall that a set $D \subseteq V$ is a *dominating set* if $B(D) = V \setminus D$. The size of the smallest dominating set is called the *domination number* of

http://dx.doi.org/10.1016/j.dam.2017.08.005 0166-218X/© 2017 Elsevier B.V. All rights reserved.

E-mail address: sbernav@upo.es.

ARTICLE IN PRESS

S. Bermudo / Discrete Applied Mathematics 🛛 (🗤 🗤) 🗤 – 🗤

Fig. 1. Graphs F_1 and F_2 .

the graph *G*, written as $\gamma(G)$. Favaron et al. [10] proved that $\gamma_R(G) \le n - \frac{\gamma(G)}{2}$ for any graph *G* of order $n \ge 3$, where $\gamma(G)$ is the domination number of *G*, and Chambers et al. [8] proved that $\gamma_R(G) \le \frac{8n}{11}$ for any graph *G* with minimum degree two and order $n \ge 9$. In this work we prove that for any graph *G* with minimum degree two and order $n \ge 9$, $\partial(G) \ge \frac{3\gamma(G)}{4}$; consequently, $\gamma_R(G) \le n - \frac{3\gamma(G)}{4}$. We also prove that $\partial(G) \ge \frac{5n}{17}$ for any graph with order $n \ge 15$, minimum degree two, and which does not contain any induced subgraph isomorphic to F_1 or F_2 (see Fig. 1); consequently, $\gamma_R(G) \le \frac{12n}{17}$. This inequality is true, in particular, when the graph does not contain any induced cycle of five vertices.

We begin by stating some notation and terminology. Let G = (V, E) be a simple graph of order n = |V| and size m = |E|. We denote two adjacent vertices u and v by $u \sim v$ or $\{u, v\} \in E$. For a vertex $u \in V$ we denote $N(v) = \{u \in V : u \sim v\}$ and $N[v] = N(v) \cup \{v\}$, and given a set $S \subseteq V$ we denote $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$. The degree of a vertex $v \in V$ will be denoted by $\delta(v) = |N(v)|$. We denote by δ and Δ the minimum and maximum degree of the graph, respectively. Any graph (V', E') with $V' \subseteq V$ and $E' \subseteq E$ is a subgraph of G. A subgraph (V', E') of G is an induced subgraph by V', written as G[V'], if $E' = \{\{u, v\} \in E : u, v \in V'\}$.

Notice that for every graph *G* with connected components G_1, \ldots, G_k , $\partial(G) = \partial(G_1) + \cdots + \partial(G_k)$. Therefore, we will only consider connected graphs.

2. Preliminary results

Recall that a graph consisting of one central vertex c and d neighbors that in turn have no further neighbors other than c is also known as a *star* (or d-*star*) $S_d = K_{1,d}$, whose center is c. If X = (V, E) is a d-star with center c, then $V \setminus \{c\}$ will be also called *ray vertices* and the edges will be termed *rays*, in order to stay with the picture. We also denote a d-star X by $X = \{c; v_1, \ldots, v_d\}$ to indicate that c is its center and v_1, \ldots, v_d are its ray vertices. We will call a d-star big if $d \ge 2$.

Given a graph G = (V, E), a *big-star packing* is given by a vertex-disjoint collection $S = \{X_i : 1 \le i \le k\}$ of (not necessarily induced) big stars X_i , i.e., the graph induced by $V(X_i)$, written $G[V(X_i)]$ for short, contains a *d*-star with $d = |V(X_i)| - 1 \ge 2$. If S is a big-star packing of G, we denote this property by $S \in SP(G)$. We will write S(D) when we want to specify that D is the set of vertices which are star centers of S. The set $S_2(D)$ collects all 2-stars from S(D), and $S_{\ge t}(D)$ collects all *d*-stars from S(D) such that $d \ge t$. For $S \in S(D)$, let C(S, D) collect all vertices from C(D) that are neighbors of vertices from S. For a collection $S \subseteq S(D)$ of stars, let $C(S, D) = \bigcup_{S \in S} C(S, D)$. Finally, we denote $C_2(D) = C(D) \setminus C(S_{\ge 3}(D, D))$.

For every $S \in SP(G)$ we write $\partial(S) = \sum_{S \in S} (|S| - 2)$ and call this the *differential* of the big-star packing S. In [3] it was proved that $\partial(G) = \max\{\partial(S) : S \in SP(G)\}$. We call a star packing $S \in SP(G)$ a *differential (star) packing* if it assumes the differential of the graph, i.e., if $\partial(S) = \partial(G)$. Let $\partial SP(G)$ collect all differential packings of G. We know that given a graph, the set D giving the biggest differential is not, in general, unique. But, even if we fix the set D such that $\partial(D) = \partial(G)$, we can find different big-star packings S(D) and S'(D) such that $\partial(S(D)) = \partial(S'(D)) = \partial(G)$. Since we will follow the techniques used in [3–5], we will enumerate here some conditions to choose the set D and the big-star packing S(D) which we will work with. We will also summarize all the results and statements contained in [3] which we will need in our proofs.

We consider the following sets

$$\mathcal{D}_1(G) = \{ D \subseteq V : \text{ there exists } \mathcal{S}(D) \in \partial SP(G) \},\$$

and

 $\mathcal{D}_2(G) = \{ D \in \mathcal{D}_1(G) : \forall D' \in \mathcal{D}_1(G) \ (|D'| \le |D|) \}.$

Throughout this paper, if $D \in \mathcal{D}_1(G)$, $\mathcal{S}(D)$ will denote a big-star packing in $\partial SP(G)$. Most of the following results were proved in [3], but since we have changed some notations we will include the proofs of those which have been modified.

Lemma 2.1 ([3]). If $D \in \mathcal{D}_1(G)$, then the induced graph G[C(D)] decomposes into K_1 - and K_2 -components.

Lemma 2.2 ([3]). If $D \in \mathcal{D}_2(G)$, then any vertex x in B(D) has at most one neighbor in C(D).

Lemma 2.3 ([3]). If $D \in \mathcal{D}_2(G)$ and $S \in \mathcal{S}(D)$ with $|V(S)| \ge 4$, then no $x \in V(S) \setminus D$ is neighbor of a K_2 -component in G[C(D)].

Download English Version:

https://daneshyari.com/en/article/6871773

Download Persian Version:

https://daneshyari.com/article/6871773

Daneshyari.com