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a b s t r a c t

Using the characteristic property of chordal graphs that they are the intersection graphs
of subtrees of a tree, Erich Prisner showed that every chordal graph admits an eccentricity
2-approximating spanning tree. That is, every chordal graph G has a spanning tree T such
that eccT (v) − eccG(v) ≤ 2 for every vertex v, where eccG(v) (eccT (v)) is the eccentricity
of a vertex v in G (in T , respectively). Using only metric properties of graphs, we extend
that result to a much larger family of graphs containing among others chordal graphs, the
underlying graphs of 7-systolic complexes and plane triangulations with inner vertices
of degree at least 7. Furthermore, based on our approach, we propose two heuristics
for constructing eccentricity k-approximating trees with small values of k for general
unweighted graphs. We validate those heuristics on a set of real-world networks and
demonstrate that all those networks have very good eccentricity approximating trees.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphsG = (V , E) occurring in this paper are connected, finite, unweighted, undirected, loopless andwithoutmultiple
edges. The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance dG(u, v) between two
vertices u and v is the length of a shortest path connecting u and v in G. If no confusion arises, we will omit subindex G. The
interval I(u, v) between u and v consists of all vertices on shortest (u, v)-paths, that is, it consists of all vertices (metrically)
between u and v: I(u, v) = {x ∈ V : dG(u, x) + dG(x, v) = dG(u, v)}. The eccentricity eccG(v) of a vertex v in G is defined by
maxu∈VdG(u, v), i.e., it is the distance to amost distant vertex. The diameter of a graph is themaximumover the eccentricities
of all vertices: diam(G) = maxu∈V eccG(u) = maxu,v∈VdG(u, v). The radius of a graph is the minimum over the eccentricities
of all vertices: rad(G) = minu∈V eccG(u). The set of vertices with minimum eccentricity forms the center C(G) of a graph G,
i.e., C(G) = {u ∈ V : eccG(u) = rad(G)}. Recall that for every graph G, diam(G) ≤ 2rad(G) holds.

A spanning tree T of a graph G with dT (u, v) − dG(u, v) ≤ k, for all u, v ∈ V , is known as an additive tree k-spanner
of G [20] and, if it exists for a small integer k, then it gives a good approximation of all distances in G by the distances in T .
Many optimization problems involving distances in graphs are known to beNP-hard in general but have efficient solutions in
simpler metric spaces, with well-understood metric structures, including trees. A solution to such an optimization problem
obtained for a tree spanner T of G usually serves as a good approximate solution to the problem in G.

E. Prisner in [31] introduced the new notion of eccentricity approximating spanning trees. A spanning tree T of a graph
G is called an eccentricity k-approximating spanning tree if eccT (v) − eccG(v) ≤ k holds for all v ∈ V . Such a tree tries to
approximately preserve only distances from each vertex v to its most distant vertices and can tolerate larger increases
to nearby vertices. They are important in applications where vertices measure their degree of centrality by means of

✩ Results of this paper were partially presented at the WG’16 conference Dragan et al. (2016) [11].
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their eccentricity and would tolerate a small surplus to the actual eccentricities [31]. Note also that Nandakumar and
Parthasarasthy considered in [26] eccentricity-preserving spanning trees (i.e., eccentricity 0-approximating spanning trees)
and showed that a graphG has an eccentricity 0-approximating spanning tree if and only if: (a) either diam(G) = 2rad(G) and
|C(G)| = 1, or diam(G) = 2rad(G)− 1, |C(G)| = 2, and those two center vertices are adjacent; (b) every vertex u ∈ V \ C(G)
has a neighbor v such that eccG(v) < eccG(u).

Every additive tree k-spanner is clearly eccentricity k-approximating. Therefore, eccentricity k-approximating spanning
trees can be found in every interval graph for k = 2 [20,22,30], and in every asteroidal-triple-free graph [20], strongly chordal
graph [3] anddually chordal graph [3] for k = 3.On the other hand, although for every k there is a chordal graphwithout a tree
k-spanner [20,30], yet as Prisner demonstrated in [31], every chordal graph has an eccentricity 2-approximating spanning
tree, i.e., with the slightly weaker concept of eccentricity-approximation, one can be successful even for chordal graphs.

Unfortunately, the method used by Prisner in [31] heavily relies on a characteristic property of chordal graphs (chordal
graphs are exactly the intersection graphs of subtrees of a tree) and is hardly extendable to larger families of graphs.

In this paper we present a new proof of the result of [31] using only metric properties of chordal graphs. This allows us to
extend the result to a much larger family of graphs which includes not only chordal graphs but also other families of graphs
known from the literature.

It is known [5,35] that every chordal graph satisfies the following two metric properties:

α1-metric: if v ∈ I(u, w) and w ∈ I(v, x) are adjacent, then dG(u, x) ≥ dG(u, v)+ dG(v, x)− 1 = dG(u, v)+ dG(w, x).
triangle condition: for any three vertices u, v, w with 1 = dG(v, w) < dG(u, v) = dG(u, w) there exists a common neighbor

x of v and w such that dG(u, x) = dG(u, v)− 1.

A graphG satisfying theα1-metric property is called anα1-metric graph.1 If anα1-metric graphG satisfies also the triangle
condition then G is called an (α1, ∆)-metric graph. We prove that every (α1, ∆)-metric graph G = (V , E) has an eccentricity
2-approximating spanning tree and that such a tree can be constructed in O(|V ||E|) total time. As a consequence, we get
that the underlying graph of every 7-systolic complex (and, hence, every plane triangulation with inner vertices of degree
at least 7 and every chordal graph) has an eccentricity 2-approximating spanning tree.

The paper is organized as follows. In Section 2, we present additional notions and notations and some auxiliary results.
In Section 3, some useful properties of the eccentricity function on (α1, ∆)-metric graphs are described. Our eccentricity
approximating spanning tree is constructed and analyzed in Section 4. In Section 5, the algorithm for the construction of
an eccentricity approximating spanning tree developed in Section 4 for (α1, ∆)-metric graphs is generalized and validated
on some real-world networks. Our experiments show that all those real-world networks have very good eccentricity
approximating trees. Section 6 concludes the paper with a few open questions.

2. Preliminaries

For a graph G = (V , E), we use n = |V | and m = |E| to denote the cardinality of the vertex set and the edge set of G. We
denote an induced cycle of length k by Ck (i.e., it has k vertices) and byWk an inducedwheel of size kwhich is a Ck with one extra
vertex universal to Ck. For a vertex v of G, NG(v) = {u ∈ V : uv ∈ E} is called the open neighborhood, and NG[v] = NG(v)∪{v}
the closed neighborhood of v. The distance between a vertex v and a set S ⊆ V is defined as dG(v, S) = minu∈SdG(u, v) and
the set of furthest (most distant) vertices from v is denoted by F (v) = {u ∈ V : dG(u, v) = eccG(v)}.

An induced subgraph of G (or the corresponding vertex set A) is called convex if for each pair of vertices u, v ∈ A it
includes the interval I(v, u) of G between u, v. An induced subgraph H of G is called isometric if the distance between any
pair of vertices in H is the same as their distance in G. In particular, convex subgraphs are isometric. The disk D(x, r) with
center x and radius r ≥ 0 consists of all vertices of G at distance at most r from x. In particular, the unit disk D(x, 1) = N[x]
comprises x and the neighborhood N(x). For an edge e = xy of a graph G, let D(e, r) := D(x, r) ∪ D(y, r).

By the definition of α1-metric graphs clearly, such a graph cannot contain any isometric cycles of length k > 5 and any
induced cycle of length 4. The following results characterize α1-metric graphs and the class of chordal graphs within the
class of α1-metric graphs. Recall that a graph is chordal if all its induced cycles are of length 3.

Theorem 1 ([35]). G is a chordal graph if and only if it is an α1-metric graph not containing any induced subgraphs isomorphic
to cycle C5 and wheel Wk, k ≥ 5.

Theorem 2 ([35]). G is an α1-metric graph if and only if all disks D(v, k) (v ∈ V , k ≥ 1) of G are convex and G does not contain
the graph W++6 (see Fig. 1) as an isometric subgraph.

Theorem 3 ([13,32]). All disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex if and only if G does not contain isometric cycles
of length k > 5, and for any two vertices x, y the neighbors of x in the interval I(x, y) are pairwise adjacent.

1 A more general concept of αi-metric was introduced in [35], however, in this paper, we are interested only in the case when i = 1.
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