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a b s t r a c t

We address the problem of computing distances between permutations that take into
account similarities between elements of the ground set dictated by a graph. The problem
may be summarized as follows: Given two permutations and a positive cost function on
transpositions that depends on the similarity of the elements involved, find a smallest cost
sequence of transpositions that converts one permutation into another. Our focus is on
costs thatmaybedescribed via specialmetric-tree structures. Thepresented results include
a linear-time algorithm for finding a minimum cost decomposition for simple cycles and a
linear-time 4/3-approximation algorithm for permutations that contain multiple cycles.
The proposed methods rely on investigating a newly introduced balancing property of
cycles embedded in trees, cycle-merging methods, and shortest path optimization tech-
niques.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem of sorting distinct elements according to a given set of criteria has a long history and has been studied
in mathematics, computer science, and social choice theory alike [8,11,19]. One volume of the classical text in computer
science – Knuth’s The Art of Computer Programming – is almost entirely devoted to the study of sorting. The solution to the
problem is well known when the sorting steps are swaps (transpositions) of two elements: In this case, it is convenient to
first perform a cycle decomposition of the permutation and then swap elements in the same cycle until all cycles have unit
length.

Sorting problems naturally introduce the need for studying distances between permutations. There are many different
forms of distance functions on permutations, with the two most frequently used being the Cayley distance and the Kendall
distance [5]. Although many generalizations of the Cayley, Kendall and other distances are known [16], only a handful of
results pertain to distances inwhich one assigns positiveweights or random costs1 to the basic rearrangement steps [1,6,14].
Most such work has been performed in connection with genome rearrangement studies [2,7] and for the purpose of gene
prioritization [18]. (Note that [2,7] use a different notion of ‘‘transposition’’ than is used in this paper.) Some other examples
appear in the social sciences literature (see references in [6]), pertaining to constrained vote aggregation and logistics [12].
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A related line ofwork is the study of sorting algorithms inwhich comparisons betweendifferent objectsmayhave different
costs depending on the objects in question. Such problems were studied (in a broader context) by Charikar et al. in [3,4], and
this line of work was continued by [9,13] who considered additional constraints on the cost functions involved. Gupta and
Kumar [10] considered the problem of sorting objects in the case where the comparison costs form a metric on the ground
set. This is of particular relevance to our work in this paper, where we consider transposition costs which form a metric on
the ground set. However, all of the problems in this line of work deal with nonuniform costs on information, while we instead
impose nonuniform costs on the rearrangement steps, without imposing any costs on information. As such, while the broad
ideas are similar, the technical details differ greatly between this line of research and the current work.

A number of practical problems call for positive costs (weights) on transpositions, and costs that capture some constraint
on the structure of the transpositions. The problem at hand may then be described as follows: For a given set of positive
costs assigned to transpositions of distinct elements, find a smallest cost sequence of transpositions converting a given
permutation to the identity.

In our subsequent analysis, we focus on constraints that take into account that elements of the ground set may be similar
and that transposing similar elements should induce a smaller cost than transposing dissimilar elements. We refer to the
underlying family of distance measures as similarity distances. The similarity distance is not to be confused with the distance
used in [17], where the goal was to rank similar items close to each other in an aggregated list.

The contributions of thiswork are three-fold. First,we introduce a Y-tree (i.e., a treewith atmost one node of degree three)
cost function and a notion of similarity between permutations associated with this special tree structure. In this setting, the
cost of transposing two elements equals the weight of the shortest path in a Y-tree. Our focus on Y-trees is largely motivated
by the fact that the general tree analysis appears to be quite complex.While Y-trees are simple enough to be computationally
tractable, they are complex enough that interesting new phenomena arise that are not present in path metrics. Second, we
describe an exact linear time decomposition algorithm for cycle permutations with Y-tree costs. Third, we develop a linear
time, 4/3-approximation method for computing the similarity distance between arbitrary permutations.

The paper is organized as follows. Section 2 introduces the notation and definitions used throughout the paper. Section 3
contains a brief review of prior work as well as some relevant results used in subsequent derivations. This section
also presents a linear time algorithm for computing the Y-tree similarity between cycle permutations. This algorithm is
extended in Section 4 to general permutations via cycle-merging strategies that provide linear time, constant-approximation
guarantees. Section 5 contains the concluding remarks.

2. Mathematical preliminaries

For a given ground set [n] ≜ {1, 2, . . . , n}, a permutation π : [n] → [n] is a bijection on and onto [n]. The collection of all
permutations on [n] – the symmetric group of order n! – is denoted by Sn.

There are several ways to represent a permutation. The two-line representation has the domain written out in the first
line and the corresponding image in the second line. For example, the following permutation is given in two-line form:

π =

(
1 2 3 4 5 6
6 1 2 5 4 3

)
.

The one-line representation is more succinct as it only utilizes the second row of the two-line representation; the above
permutation in one-line format reads as (6, 1, 2, 5, 4, 3). The symbol e is reserved for the identity permutation (1, 2, . . . , n).

Sometimes,we find it useful to describe a permutation in terms of elements and their images: hence, a third description of
the aforementioned permutation is π (1) = 6, π (2) = 1, π (3) = 2, π (4) = 5, π (5) = 4, and π (6) = 3. A straightforward
interpretation of these expressions is that π (i) represents the element placed in position i. We also define the inverse of
a permutation π , π−1, in which π−1(i) describes the position of element i. With this notation at hand, the product of two
permutations π, σ ∈ Sn, µ = π σ , can be defined by µ(i) = π (σ (i)), for all i ∈ [n]. The support of a permutation π ∈ Sn,
written supp(π ), is the set of all i ∈ [n]with π (i) ̸= i. We write |π | to refer to |supp(π )|.

For k > 1, a k-cycle, denoted by κ = (i1 . . . ik), is a permutation that acts on [n] in the following way2 :

i1 → i2 → . . .→ ik → i1,

where x→ y denotes y = κ(x). In other words, κ = (i1 . . . ik) cyclically shifts elements in the permutation confined to the
set {i1, . . . , ik} and keeps all other elements fixed. A cycle of length 2 is called a transposition, and is denoted by (a b).

In general, for a, b ∈ [n], π (a b) ̸= (a b)π , because π (a b) corresponds to swapping elements of π in positions a
and b while (a b)π corresponds to swapping elements a and b in π . For instance, (6, 1, 2, 5, 4, 3)(2 3) = (6, 2, 1, 5, 4, 3),
while (2 3)(6, 1, 2, 5, 4, 3) = (6, 1, 3, 5, 4, 2). Note that in the former example, we used π (a b) to denote the product of a
permutation and a transposition.

Two cycles are said to be disjoint if the intersection of their supports is empty; furthermore, two cycles are termed
to be adjacent if they have exactly one common element in their supports. Although non-disjoint cycles are sporadically
mentioned in the combinatorial literature, their use is extremely limited due to the fact that disjoint cycles offer simpler

2 This is not to be confused with the one line representation using commas between entries.
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